RUGID RTU
TECHNICAL MANUAL

RUGG6, RUG7, RUGS MODELS

RELE &R e

(=141
Lol [[2)[3][a][(s1(e][7][e][s][.][¥]

. EEEE

TABLE OF CONTENTS

1.0 INTRODUCTION. ..
1.1 UNIT FEATURE SUMM&RY

1.3 CIRCUIT BOARD FUINLITIONINS i esimiuiidiuicinpiadisissin s sesm s o s sh s b i i

2.0 GET'ITNG STARTED...
2.1 APPLYING PDWER
22 CONNECTING A CDMFUTER
2.3 OPERATING MODES...
2.4 POWER UP [N[T[ALIZAT[DN

3.0 CONNECTING AND CONTROLLING 1O...
3.1 ANALOG INPUTS...
3.2 ANALOG DUTPUTS

3.3 CALIBRATION S{}FTWARF vy

3.4 DIGITAL INPUTS ..

3.5 BASE DIGITAL CIUTP'UTS-
R
s
i
AP
il
.
i

3.7 KEYBOARD ..

3.8 SERIAL PORTS i

3.9 PRINTER PORT {RUGG & S}

3.10 TIMERS... :

3.11 RE<]M'E CLDEK.I’CP;LENDAR
3.12 WATCHDOG TIMER....

3.13 MEMORY WRITE PRDTECT'IDN

16 RAM BANK CONTROL i i il i st sbsns i bban b T sk o e

4.0 BASIC INTERPRETER...
4.1 DIRECT AND HQD]RECT CDMM&NDS
4.2 STATEMENTS... s
4.3 ENTERING AND ED]TFNG PRUGRAMS

e 14

4?ﬂRRA'fS

4.8 FRDTEETED END UN'PRDTECTED MEMDRY USAGE
4.9 PREASSIGNED VARIABLE MAMES. ioiiiiaiiniiaiasisnneansssassansisassissisnssss shasssnass s siabosnss
4 A CONTROLLING THE WATCHDOG TIMERl it asbam s s san sasnss
e
wac Pl
et
R)
B2

4B LISTING THE PROGRAM ..
4.C BASIC FAULT TRAPPTNG

4.D PROGRAM EXECUTION CDNTRDL

4 E ARITHMETIC ..

-1
- 86

4 H STRINGS..
4.1]'NPUT.-"'GUTPUT STATEMENTS

4.K MISCELLANEOUS GPER.AT“]DNS

ii

oL —

11
ssiaas 13
sivns 13
weien 13
FE 1
2.5 USING OMODEM TO CDMMJNICATE WITH RUGLD
2.6 CONNECTING A PRINTER {RUGE and RUGE nnl}'}
seisizad]

e
R

g
wid9

17
19

43

39
59

63

T
s T

72
73
73

05
73
76

82

&7

wienis BB
PRISH
P
—
cernes L O
civnias 1O

. 102
102

5.1 GENERAL DE-SCR.IFTION
5.2 CONFIGURING RUGID FI'.}R CRC CDI'u'[h-{UNICﬁT]DHS
5.3 INITIATING TRANSMISSIONS FROM BASICcoovnens

5.4 MODBUS FORMAT MESSAGES ..o..ooooooooooeesooeoessssesssesressessee ,':,,..)

6.0 HOWTO...
6.1 TURN 'DH A. DIﬁITﬁL 'DUTFUT {REL&Y]
6.2 FLASH A DIGITAL OUTPUT ON AND OFF REFEATEDL‘I’

- 103

6.5 CONTROL AN ANALOG OUTPUT....

6.6 PROGRAM A TIME DELAY ... A A A R P P R
.. 103
6.9 HOOK UF AN EXTERNAL BATTERY BACKUP.......ccccoimmemnmmmiereimssmsssnin ssssnsssinssnssanss
o
puasvare HOS
T | -
RES L1
Ao L
wuins 106
v {1}
S B
e
w111

6.7 HOOK UP A 4-20 MA. TRANSDUEER
6.8 READ AND SET REAL TIME CLOCK 'H'nLUE F’ROM PRDGMM

6.A CHANGE ONBOARD LITHIUM BATTERYccoccovrenvines
6.B REPLACE FUSE
6.C DISPLAY LAST EﬁSIC E.R.R.GR MESSAGE

6.E AUTODIAL A TELEPHONE NUMBER...
6.F HOOKUP RUGID TO A RADIO ...

6.G HOOKUP EXTERNAL MUX/A IER

7.0 TROUBLESHOOTING .. i
7.1 PROGRAM IS LﬂST GN PD‘WER DUTAGE
7.2 ANALOG INPUTS ARE INACCURATE ...

7.3 UNIT BOOTS TO MONITOR INSTEAD E}F' EhSIC PRDGRAM
e 112
112

7.4 CLOCK WILL NOT KEEP ACCURATE TIME...

7.5 UNIT APPEARS TOTALLY [NDPERETWE T L
8.1.1 RUGH and 3 h'L-'u[N BDARD CDMFGNEHT RRRANGEE{ENT
i 118
s LT
wssiinioss | L
i 119
iiies LD
PO e
e 128
SN, -1
SRS]
P s
w133

8.0 CIRCU]T BOARDS... NP—

8.1.2 MAIN BOARD BUS CONMECTOR PINOUT...

8.2 RAM BANK COMPONENT ERMNGEMENT

8.3 SPEECH SYNTHESIZER COMPONENT ﬁRRAHGEMENT
8.4 RUG6 MODEM BOARD...
8.5 ANALOG I'O EIFANEIDN

8.6 EXTERNAL FIELD TERMIN P.L BDARDE

8.7 RUGE BOARD ARRANGEMENTS....

8.8 RUG7 BOARD COMPONENT HRMHGEWNT

8.9 MUX BOARD COMPONENT ARRANGEMENT ... e E e
8.A RADAR GUN/PROTOTYPING BOARD CDMP’CIHENT ARRANGEMEW

9.0 USEFUL INFORMATION... RS E R R F R

sunine L 34

TR |
vens 136
9.6 VOTED MEMDRY CDNTE.N'IS
APPENDIX A UNIT DIMENSIONS ... M',r

9 4 RETLTRNJ'REPA]R PGL[EY
9.5 MEMORY MAP...

APPENDIX B..EXAMPLE REMOTE RTU PRDGRAM

APPENDIX C..EXAMPLE AUTODIALING CENTRAL PRGGRAM

il

89

102

103

104

112

112

114

133

138
141

167

TABLES

Table 1.1 APPLICATIONS OF RUGID MODELS.........ciiiimiiiimisiivesissmsssesssasisbsasiisasisssssniass
TABLE 1.1 SUMMARY OF MODEL FEATLIRESooisiuimmimnsnssisnsissinsssinssss sians sss iensssasssnssssssnss soasssss
Table 4.4 PIC COUNTER COMEY ENTRIRE ..o i o ssiismssdssdaid siasinaiisss
— Y |
Table 3.9 PRINTER PORT PINDUT......coomsmminsomm e 90

cena B85

Table 3.5 RUG6, RUGT, RUGE RELAY CHANNELS ..
Table 3.8.A RUGS Optional RS232 Port Pinout...

TABLE 3.17.1 RAM BANK USE FOR PLDTT]]"'IG TO FR.]NTER

TABLE 3.17.2 EXAMPLES SPECIFYING PLOT SIZE AND [DCAT]DM

w

21

FIGURES

FIGURE 1.1 RUGS or RUGE SET UP FOR BACKPAN MOUNTINGcoccmmmmmmmimmimniimsmssinmnisass
FIGURE 1.2 RUGTD... o g B S B S A S R B S AL
FIGURE 1.2.1 RUGG BL(}CK DIAGRAM
FIGURE 1.2.2 RUGT BLOCK DIAGRAM...
FIGURE 1.2.3 RUGS BLOCK DIAGRAM... R AT T I R AT A T N RN TR
FIGURE 2.1.1 POWER CONNECTION...

FIGURE 2.2.1 CONNECTION TO IBM PC CDN[FA'I'IBLE CDMI‘[TI'ER
FIGURE 3.1.1A ANALOG INPUT SCHEMATIC .. e e s R R S C e T et
FIGURE 3.1.2A EXPANSION ANALOG INPUT SCH:EI\-'[AT]C S e
FIGURE 3.1.2B EXPANSION ANALOG [NPUT EOHNECT[DNS
FIGURE 3.2A EXPANSION ANALOG OUTPUT SCHEMATIC... e L e R e |
FIGURE 3.2B EXPANSION ANALOG OUTPUT SCHEMATIC {RUGE & 3]19
FIGURE 3.2C EXPANSION ANALCG OUT EXAMPLE CONNECTIONS.......cocnmummmemmmmmmmmimne 30
FIGURE 3.4A DIGITAL INPUT SCHEMATIC... " R R
FIGURE 3.4B EXPANSION DIGITAL IN CDNN'ECT[GN EK&]'![PLES 35
FIGURE 3.5A MATN BOARD DIGITAL OUTPUT SCHEMATIC............. 4{]
FIGURE 3.5.1 EXPANSION DIGITAL OUTPUT CONNECTIONS 4.42
FIGURE 3.6.4 LCD CURSOR POSITIONING EXAMPLES..........cooisimeensisssrensresssnssenssrassnssenssesssnssess 40
FIGURE 3.6.6 GRAPHIC CHARACTER BETccococrmeerssnesrmesssesseresssmssasmsemsresssresssmsimsssies sesseass sesssnseas 0
FIGURE E F 1 TYPICAL RLTGlS R_AD]D CGNNEC'I'IDN et S LT
FIGURE 6.F.2 TYPICAL RUG7 RADIO CDNNECTI{}N. SN M R 1
FIGURE 6.F.3 TYPICAL RUGSE RADIO CONNECTION........coocirasreisrasssissssions rassnssnssssnss susssasssnssnasans 109
FIGURE 6.G MUX/AMP HOOKUP TO RUGE .. A S L O RSN o e o s PR I
FIGURE 8.1 MAIN BOARD COMPONENT ﬁRRﬁN{.‘:EL{E'NT iR e e L
FIGURE 8.2 RAM BANK COMPONENT ARRANGEMENT ... R e e R T
FIGUKE 8.3 SPEECH SYNTHESIZER COMPONENT ARRﬁNGEMENT Rt D
FIGURE £.4.1 MODEM + DIGITAL 1/0 COMPONENT ARRANGEMENT TSRO ST P 3
FIGURE 8.5 ANALOG 'O EXPANSION BOARD LAYOUT... S e A
FIGURE $.6.1 PROTECTED FIELD BOARD COMPONENT ﬁRRANGEh[ENT ST b
FIGURE 8.6.2 EXPANSION FIELD BOARD LAYOUT (AFB, D‘FB} RS S SC, 1. |
FIGURE 8.6.3 RELAY FIELD BOARD (RFB)... NI e e) -
FIGURE 8.6.4 OPTICALLY ISOLATED F]ELD BGA.RD LAYDUT i AR 9
FIGURE 8.7.1 RUGE COMMUNICATIONS BOARD COMPOMNENT ARRANGEMENT werins 2B
FIGURE 8.7.2 RUGE LOW POWER FIELD BOARD... e e s R
FIGURE 8.8 RUGT BOARD COMPONENT ARR&NGEMENT e e e e
FIGURE 8.9 MUX BOARD COMPONENT ARRANGEMENT .. AP ¢
FIGURE 8.A RADAR GUN/PROTOTYPING BOARD CD‘MP{}H'ENT ﬁRRANGEL{ENT e 132
FIGURE A.l1 RUGA/8 Unit Dimensions... e e e e e et s
FIGURE A.2 RUG7T Unit Dimensions .. e R AR Cet | 7 |
FIGURE A.3 RUG6 14 by 16 Backpan Hl;lunt Arrangemmt 143
FIGURE A.4 RUG6 17 by 17 Backpan Mount AITangement...........oucesmasmssrmssmsmsssmnsnsssnsesrnsseasen 188
FIGURE A.5 RUGT Backpan Mount Amangemient..........coeommssmrsmmmessmsssssnsmsnsssssnansssmssrssssmssesssassrestrss e 145
FIGURE A.6 Panel Cutout for RUGE/S Panel MOount............cccoveireiecnmessessansrmssmssmssssssssssassesssssassnssss 140
FIGURE B.1 EXAMPLE RTU PROGRAM IOconiiimnimnnsmsnssssnssnsnssnsessssmssssnssmssssssesssses sessnnsissnssnsses LB

BERGErawy

SECTION 1

L0 INTRODUCTION

Congratulations on obtaining the most highly integrated, complete, and capable control and data
acquisition microcomputer on the market today. The RUGID series of small computers will put you into
any of a multitude of applications with ease of integration you never imagined. These computers are
equipped with all the computing and peripheral capability necessary to perform most laboratory, municipal,
field, and home control and data acquisition functions. The supplied software is integrated with the
hardware to perform all real-time scanning functions, so all you have to do is define your application in a
fairly high level sense and rely upon the RUGID system to handle the details.

Each RUGID computer is equipped with capabilities not found in most commercially available
computers such as nonvolatile memory, watchdog timer, write protected memory, extended temperature
range, CMOS logic (for good noise immunity and low power), brownout detector, auto boot system, fully
secured array transfer communications system, and numerous control and data acquisition interfaces. Most
of these are necessary for the majority of control applications, but are seldom present in any but the most
expensive control computers, Often the user is required to integrate these capabilities into a computer not
intended for control work, and then write software to enable the various pieces to work together. What
results is a control system that usually does its job but intermittently fails and must be serviced. RUGID
computers remove this risk by providing the necessary interfaces and security functions already integrated
together in a unit that is ready to go to work when it arrives.

This manual will provide the necessary data to enable you to do most standard real-time control
applications. With it you can set up the RUGID computer to, for example, control a fairly sophisticated
laboratory process, perform production testing of electronic circuit boards, control a small water treatment
plant, control the most sophisticated traffic intersection, acquire data at a remote field site and transmit back
in response to a phone inguiry, or hook it up to an IBM, Apple or other computer to add data acquisition and
control capability.

This manual presents a complete description of the BASIC instruction set with numerous
examples, but by no means is it a BASIC programming manual that will provide sufficient tutorial to enable
the novice programmer to conveniently learn to program in BASIC. For that, consult one of the many
excellent manuals on BASIC programming.

Figures 1.1 and 1.2 present drawings showing the typical appearance of RUG6/8 and RUGT units
respectively.

ENTER
8 X 40 CHARACTER
CLEAR
GRAPHIC LCD it
of{1](2](3]||4a]|s]|s]|7][8]l9]] ||¥

PCE) LW P Y B S T W Y
P22
P
auyvog
mH
ELEL04
MUY
—_—,

— P LT ELERTS

[e—=] [« 7) #=EEeBEeBE=s gesgensassas

Figure 1.1 RUG6 or RUGS SET UP FOR BACKPAN MOUNTING

8 X 40 CHARACTER ENTER
GRAPHIC BACKLIT LCD CLEAR

18

0 2][3](4][s]le][7][8)9][.][¥

Py Stwis = D00
Moty Ovpus fomuOpen 1234 OO E T Tk

e FFEF

DEOOELEEEEEE]@@@G@&@@mmam@[@@wma@ma@mj E |
[]

PAR OUT pov Doz 00O DG4 BAT DI DCDIDIOCKNOIDf C K

MT mCY UV MM N M ADD

Figure 1.2 RUGTD}

1.1 UNIT FEATURE SUMMARY

This manual covers three main RUGID Computer models, the RUG6E, RUG7, and the RUGE. The

main applications of these three models are summarized in Table 1.1. Differences between the models are
summarized in Table 1.2, and consist mainly of base input/output (1/0) complement. Throughout the
manual, you can assume that the features discussed apply to all models unless the text specifies that certain
features apply only to certain models. All models use the same EPROM, so software upgrades can be
obtained at any time simply by purchasing a more recent EPROM. All units program identically; and all
units communicate identically. Therefore a system can be composed of a mix of different RUGID unit

types to suit individual site 11O requirements. The following table helps identify the applications for which
each model is best suited.

Table 1.1 APPLICATIONS OF RUGID MODELS

APPLICATION RUGH RUGY RUGS
CI[DJF[G|AJB]JC|D|[CIDJF]G

Remote monitoring * B 3 * » * * Y *
Stand alone control " 5

SCADA remote * . y e >
SCADA master * # + ®
Autodialer * * *
Speech autodialer *
Low power - * * * u- * “ *
Very low power * * # *
Data logger (modest * * * #
storage)
Data logger (large . * * . = * & *
storage)
Weather monitoring TG
Low cost # . ® '
Operator interface * * . - - * " #
Large 1/O L] " # .) . ®
Radio/phone appl. * L £ -8 * * ® " "

o e T SN I R

TABLE 1.1 SUMMARY OF MODEL FEATURES
FEATURE RUGH RUGT

[BICIDIF]

=
£
@

BASIC in EPROM
Battery backed RAM
Watchdog timer
Clock/Calendar
Loop supply
Battery charger
Reference V output
LCD/Keyboard
RS5232 Port 1 w
Printer Port »
300/1200 Modem "
Touchtone TX/RX ¥
Radio/Tel 4-wire "‘
Tel 2-wire "
R5232 Port 2 opt
ALERT Tone set opt uft

L]

» *

L] L]

= % # = % ¥
®* % = = #» =T
* x5 % % =0
* % = = » =T
* & = = % ="
* = 2 82 » 3O
a a % 8 = &>
= = = = = @D
= & 4 & » w0
s & & n & alDy
« & = a a0y
RS SN = 8
R
. % %= % #3

" =
-
-

& & & & & #

= % # F # ® =
- &% & % B & =
% & E * ¥ R
+ ¥ EF ¥

- #F = =

F ¥ ¥ F ¥ ¥ =] =
% # F % ® | =

-1
-1

CRC secured com
Store & forward
MODBUS on Port | * Lj
Speech synth, min,
SLEEP mode opt opt
Base 1/0:
Anslog inputs 11 11 1 11 11 1
Digital inputs 16 16 16 16 16 16
Relay outputs] g 8 8 8 8
Analog outputs 9 0 © & 6 0
User adj. gain amp
Anemometer input
-ﬁxpanainn 1O #:
Al, opto isolated 64 64 64 64 64 64 64 64 64 64
Digital in 128 128 128 128 128 128 128 128 128 128

Digital out 1286 128 128 128 128 128 128 128 128 128
AOQ, opto isolated 32 32 33 32 32 32 1 1 1 1 32 32 32 32
Other expansion:

RAM bank, 640K o B,
Normal current, ma, | 46 68 112 134 12 112 81 9B 110 132 112 14 172 112

SLEEP current, ua. 83 93 93 93 93 93 93 93

iil%
l*l—ﬁ

= * =

2
3
'hlllﬁ-ﬁ.**i****

o -

2
3

—

o b b
R,
o oboee b
= o b
— e b —
_— el S e S e

L] L] L] L] # *

-
-
=

Expansion capability is in addition to base 1/0. Number of channels for 1/O represents addressing
limitations; the card cage space could limit /O expansion to fewer channels.

1.2 UNIT BLOCK DIAGRAMS

Figures 1.2.1, 1.2.2 and 1.2.3 present the unit functional block diagrams.

CHARACTER [ewTen| PORT
o | il PRATER
(=]
(] [x] (2] (3] (e} (=] [e] (2] [a] [w] [(%] ——
MODEM
TromE |
e
32K EPROME SECURITY: THOE L
| || St B =
Wm".“ Wirfla Protesction
1 . |
2K RAM Rl Cloch/Calsndar
5K Scrachpad
24K Usar Program
Buliered VD umin n |
Potsction ~@As |- Analog Inputs
o T e
- Speech Bynthasica (1 min. storage) (=) T E o
Mg > gﬁ
= .-ll'll'lllill-pl Y lh'l'l'l"
RAM Bank [3 min, speech storage) @ o= ﬁ ﬂ ﬁ Vi
RAM Bark G2K640K) () | o m
,_m
. s v 52
a1 =, 5 n [22 - Pulse Counta
32 Dl + X2 DO per boand | H Network %g Inputs
= B 5 oy —
|| _
- |
—_S—Zoos
—_ S —Qor
S -
m:i:%zwm
POWER l%h @ 'El; }1!\'"-' = ‘1_.]
CONDITIONING o el
b Rix s g
Battery |
GHARGER 1—9 BAT -
IMVERTER @ e }u%m
‘;E@ coM Up 1o 100 ma.

Figure 1.2.1 RUG6 BLOCK DIAGRAM

Figure 1.2.2 RUGT BLOCK DIAGRAM

wl

36686886
S8EE58S S

[snswcmmcm | e
GRAPHIC BACKLIT LED L= .
b e e e e —-] I'-' ,.l'
O RO O E 2L D
(" T)
2K EPROM:
BASIC
Mongor
Communications
i Scanning
T
24K Usar Prograen
Bufiernd (/0
SECURITY:
Timer
B Dptactoe
AM Wit Protosstica m
Rsaftima CiosiyCalsadar
—. Lithmm
—— Digitad
Battary
S Ssars
SLEEP TIWMER
r)_mm
Fastwy
wpwwS |y oo
PORER _‘[12VAC or
CONDITIONING PR+ | 12-15VDC In ;
— &% PWR-
BATTERY e | i }mmnctnm
CHARGER - Bt
» L@ Ml |
O
IWVERTER | D 1 Power
Low i

=]

114

;

| Ralay Outpits

: > ()
40 CHARACTER [mien] I_W 2 L) e
BAPHIC LD o
e AEEw |
WHEEEDEDEDHOE W E e
WOOEM I : XM=
| R+
el |- B S Dt
= o - 3| PrL:u 1] 2-wne |- To Telsphone
17% EPROM:
e H 21
Commnications = il]
W0 Ezenning —| D3
u g; @4
o | g Asalog
22 RAM = A§ [Inpuis
5K Seraichped = !
iy H 4, o1
["ﬂj 2n
SECURITY: 'TXY Hllllrl-h'“_'.
Watchdog Timer POWER
B e b03803058s ===
Anemosmoter Puises <} e
AN
Reatime CockCalondar 3 DiE
:glll"
== Litiom Digtal e
— Baiwy It ou _ |—2 0 Eﬁ"ﬂﬂ nter
m ™ |2 04 [inpug "
; &
EXPANSION BUS: _@:f
fua [640K Batinry Backad FAM
_— L oi7 e 4 X 18 G Assiig In
Procssace j_m e 4 X 8 Cham Araiog Out s b .
___Dis e 4 {32 Chan Digital In A
.! - b4 3 32 Ghan Digital Out 1, L.
|| Peemometar Puisss :‘ — { e 003 -
=] i
]) 18 Loop Power —0
m INVERTER G 18v Up to B0 ma i
o el
. d REFERENCE & Instrument Referanca
s =2 12 Instrumant Power
), &],1mpmm

I{@II‘I‘-

Figure 1.2.3 RUGS BLOCK DIAGRAM

1.3 CIRCUIT BOARD FUNCTIONS

A RUGID unit can consist of a minimum of just the main board, or the main board plus many
combinations of expansion boards, display and keyboard. This section summarizes the functions of the
expansion boards so that you will know what is available if you wish to expand your RUGID unit.

1.3.1 Main Board
{can be used stand alone for imbedded applications)

- Processor - 32K Battery backed RAM
- 32K EPROM with BASIC - Watchdog timer

- Brownout detector - Real-time clock/calendar
- LCD interface - Keyboard interface

- Negative voltage inverter - RS8232 port #1

- Parallel printer port - 16 digital inputs

- 11 analog inputs - 8 relay driver outputs

1.3.2 RAM Bank
{can use one per unit for data storage, plus one per unit to expand speech storage)

- 32K to 640K bytes RAM, battery backed up
1.3.3 Speech Synthesizer

- ADPCM speech digitizer

| minute nonvolatile speech storage
- ADPCM speech synthesizer

Audio amplifier

Interface to modem board

1.3.4 Analog I/'O Expansion
{up to four boards per unit max)

- 16 analog inputs, 12 bits, optically isolated, 4-20 ma.
- % analog outputs, 12 bits, optically isolated, 4-20 ma. or voltage

1.3.5 Digital I/O Expansion
{up to four boards per unit max)

- 32 digital inputs, resistor isolated
- 32 relay driver outputs
- Relay back EMF protection

1.3.6 Main Unit Protected Field Board

- B4 screw terminals

Analog input current sensors

Anzlog input current loop/voltage compatibility selectors
- Digital input and digital output LED’s

- Digital input resistive isolators

- Eight 10 amp relays

- Power fuse, rectification, filtering

- R5232 (DBY) and paralle] printer (DB25) connections

- 100 ma inverter type loop power supply

- 140 ma temperature compensated battery charger

- IEEE surge protection on all 'O

- clamping zeners and current limiting resistors per analog input channel

1.3.7 Modem/Communications Board

- 300/1200 baud modem

- Auto dialer

- Auto answer

- Z-wire/d-wire interface, software selected
RS232/R5422 software selected

Speech synthesizer interface

Touchtone detector

Transmitter keyer

1.3.8 Digital /0 Expansion Field Wiring Board

- 48 screw terminals with LED's
1.3.9 Analog Expansion Field Wiring Board

- 32 screw terminals
1.3.10 Relay Field Board

Board with 8 ten amp form C relays, relay drivers, LED's and screw terminals. Board requires
separate 12 VDC for operation. Boards can be daisy chained up to four in a row for a total of 32 relays
attached to one MIO or DIO board internal to the RUGSH or RUGE
1.3.11 Optical Field board

Board with 32 channels of optically isolated digital inputs. Board requires external 12 VDC to
maintain full isolation.

1.3.12 Communication board (RUGS only)
Circuit board that mounts internal to the RUGE unit to provide the following:

- Modem, Bell 103/212

- Modem with ALERT tones {optional), software selectable

- Touchtone generation and detection

- R8232 port (optional)

- Onboard low power SLEEP mode processor to trigger wake up after time delay

- Onboard low power processor to count external events and interface to shaft encoders.

1.3.13 Low power field board (RUGS only)
Field board included with all RUGS's with the following interfaces:
11 analog inpuis
8 digital inputs

4 relay outputs
3 user adjustable gain analog inputs (included in 11 total)

10

| anemometer input for counting anemometer pulses directly
Loop power supply

4.7 W DC reference for interfacing to potentiometers directly
SLEEP mode latch and wakeup button

SLEEP mode power switch

1.3.14 Phone line MUX amplifier

Amplifier/isolator/summing amplifier board for interfacing multiple phone lines to a single
RUGID. The board provides 10db transmit gain and transformer isolation. Several MUX boards can be
daisy chained together ai a site to sum multiple phone lines, providing transmit gain for each channel,
summing the received signals and maintaining 600 impedance throughout.

1.4 BOARD CURRENT CONSUMPTION

The following circuit board power consumptions were measured at room temperature using a 12
VDC power supply, on a unit running the diagnostic program DIAGNOS6. These values can vary
substantially depending upon the proportion of time spent accessing the individual boards. The unit was
observed to begin operation with a DC input of 9.1 volts, and to drop out, due to the brownout detector, at
2.1 VDC.

BOARD CURRENT, ma.
CPU 46

CPUHLCD 68

Modem 20

RAM bank, 128K11

Analog /O 25

Digital 'O 20

Speech 28

Protected field board 20 no /0 on
3 per digital input turned on (due to LED)
35 per relay turned on (due to relay+LED)
2X the loop current being sourced

Analog field board 0
Digital field board 3 per channel turned on (due to LED)
Optical field board 0

Communication board 20
Low power field board 20 no /O on
3 per digital input turned on (due to LED)
35 per relay turned on (due to relay+LED)
X the loop current being sourced

RUGT:
RUGTA 66
RUGTB &8
RUGTC 86
RUGTD 106
Backlight on, add 50
Each relay, add 35

Loop power supply, add 2X the loop current being sourced

11

SECTION 2

20 GETTING STARTED

In order to use your RUGID computer you will need 12 VAC or DC power. If yvou have ordered a
preprogrammed unit, follow the inclosed instructions regarding setup and operation. If vour unit is
unprogrammed, it will have the DIAGNOSX.CMP program installed, where X is your unit model type (6, 7
or 8) which is installed to enable you to observe unit operation and which is used during our automated test
before shipment. You will need to hook up a computer to communicate with RUGID and load a program.

2.1 APPLYING POWER

All RUGID units run on nominal 12 VDC or 12VAC power. Integral diode isolation protects the
units from voltage reversal, and prevents the unit from providing current to a DC source when an AC
voltage source is present. Refer to figure 2.1.1 for proper voltage source connections.

2.2 CONNECTING A COMPUTER

Using a computer to enter and maintain RUGID programs is necessary since the computer
provides you word processing and mass storage not available in the RUGID unit. Figure 2.2.1 illustrates the
proper connections to the main board serial port. A DB9 female to DB9 male cable is required to connect a
PC to the RUGID's programming port. You will need a terminal emulation program for interacting with
RUGID and for transferring programs to RUGID. Programs such as the public domain QMODEM will
work fine, Make sure that serial port parameters are set to 9600 baud, & bit word, one stop bit and disabled
parity for initial communications.

13

()
X

AT RECY T TECERT

=% - 4 - ¢81T RGND
&E@_&_@ﬂﬂ_ﬂﬁﬂﬂ@_

RUGE AC Powered

SUPPLY

+12-15%

|

e e

bhe
o

LRI ORARRR

RUGE DG Powered

20

-4 =k
W0 00 WD W0 e ued

Eee0e888088)] m
m——

1 el wuny Gndiag diy

e R Ay

RUGT AG Powered

RUGT DG Powered

paswEcy KNI gy
FEFLETE] L

AUGA DC Powered

FIGURE 2.1.1 POWER CONNECTION

14

il LS V.Y mmnun“. '

B X 40 CHARACTER

RAPHIC BACKLIT LGD
13
aaiBlanininiEaninisic

FC

AT PG END PROGRAM LOADING RUGID END
Soma SCADA packages requnt (fstse jumpers 19 s handshaka defaults.

A1

FIGURE 2.2.1 CONNECTION TO IEM PC COMPATIBLE COMPUTER

15

2.3 OPERATING MODES

RUGID computers have three operating modes defined as follows:

MODE FUMCTIONS
Monitor Examine and alter memory
Examine and set clock/calendar

Examine last trapped BASIC error message
Set comtmunications parameters

Command Edit BASIC program
Delete BASIC program
Clear BASIC variable space
Execute direct BASIC statements
Examine BASIC program space available

Run Run the BASIC application program

The following list presents the necessary keystrokes to traverse between modes;

CURRENT DESIRED KEYSTROKES
MODE MODE REQUIRED
Monitor Command c

Momitor Run B

Command Monitor KKK
Command Run RUN

Run Monitor RAKTR

Run Command ANTATAT
Unknown Monitor KKK

Mote that you can always get to monitor mode by hitting CTRL K three times in succession. This will
always work unless your unit has failed or your serial parameters (baud rate, ete.) do not match those
installed in the RUGID unit. From there you can get to the other modes as shown. Sometimes, particularly
when vou are debugging a Basic program with errors in it, you will have difficulty getting the umit to
respond to three CTRL T's. In that case, use the three CTRL K's. Also, note that when the unit is
communicating with port 1 in the MODBUS mode, it will not respond to CTRL T's, since it is looking for a
MODBUS poll. In that case, you must use the 3 CTRL K's to stop the program. In order that the unit not
erroneously interpret MODBUS data of $0B S0B $0B as the command to enter the monitor mode, the unit
requires approximately 100 ms minimum between successive bytes to be regarded as such a command.
Therefore, if you have your computer issue three successive CTRL K's without time delay, the RUGID will
niot halt.

16

2.4 POWER UP INITIALIZATION

Upon power up or watchdog timer reset of the processor, the unit will examine an array of pointers
and other data necessary for unit operation. These data are held triply redundantly in nonvolatile memory
and voted upon to ascertain that they are intact. The data are the following:

LOCATION VALUE FUNCTION

$7F00 $00 Puts unit in monitor mode.

$7F0I 8§01 Modem UART command; disabled parity
§7F02 518 Modem UART control: 8 bits, 1 stop, 1200 baud
$7F03 $00 Unit address

S7F04 $01 Term. UART command: disabled parity

S7TF05 $1E Term. UART control: 8 bits, 1 stop, 9600 baud
$7F06,7 Varies Reset vector to RUGID entry point

$7F08,9 Varies Interrupt vector to RUGID interrupt entry pt.
$7FOA $03 Auto-answer on 3 rings, modem in answer mode
57FOB 800 CRC off, diagnostics off, dialup line

$7FOC 8§10 CRC transmit delay 289 ms.

$7FOD.EF S00 Future

Two entries for any item must match or the default values will be installed in place of those present for that
item. Full definition of the above parameters is contained in Appendix D.

Once voting is satisfied, the unit tests PROM contents for correctness and, if not correct, issues an
error message if it can. If PROM contents are correct, the processor will jump to either the monitor, BASIC
command mode, or will run the BASIC program depending upon the operating mode in effect before the
power outage or watchdog timer reset event.

2.5 USING QOMODEM TO COMMUNICATE WITH RUGID

OMODEM is a public domain IBM compatible shareware program useful for a variety of
communications purposes, many of which we have not tested. Other programs, such as PROCOMM,
CROSSTALK, Windows Terminal, Microsoft Work's terminal mode and others will work just as well for
communicating, and loading programs. This section discusses the use of OMODEM to interact with
RUGID and to transfer programs to RUGID. Before invoking QMODEM, you should connect your
computer's serial port to RUGID's programmin port using 8 DB9 female to DB9 male cable. Also be sure
you know RUGID's communications parameters (baud rate, word length, parity and number of stop bits)
before invoking OMODEM, QMODEM has limited parameter setting options in that 8 bit words can only
be used with disabled parity. We recommend that you use the parameter setting 9600, M,8,1 which means
9600 baud, no parity, 8 bit word, 1 stop bit. QMODEM generally starts with this parameter set.

1.5.1 INVOKING QOMODEM

Before invoking QMODEM, make sure the OMODEM files are in your default drive, usually drive
A for floppy systems or drive C for hard disk systems. Also, hit the CAPS-LOCK key so that all your
communications with RUGID are in upper case. Type in QMODEM(CR) to start QMODEM. The (CR) is
the carriage return or ENTER key on your kevboard. QMODEM starts in a terminal emulation mode that
will transfer everything you type to RUGID and will display RUGID's replies to your CRT. To see if you
have communications, hold the control key down (CTEL) and hit the "K' key three times (ctrl-KKK). This
will reset RUGID to the monitor mode assuming you have correct connections and correct communications
parameters. If you get no response, follow the procedure below for setting the IBM's baud rate. If vou still
have problems, check your cabling. If that doesn't work, call RUGID.

17

2.5.2 SETTING QMODEM'S BAUD RATE, WORD LENGTH....
17 Hit ALT-P. QMODEM will present parameter options,
2) Select new parameters, e.g., typing "C' will select 300 baud, no parity, 8 bit word length and one stop bit.

3) QMODEM will transfer back to terminal emulation mode whereby your keystrokes go directly to
RUGID and RUGID's responses appear on your CRT,

Note: If you wish for QMODEM to boot up with a particular baud rate, word length, ete., run the
QINSTALL program which sets up QMODEM's initialization and lets you modify the parameters.

2.5.3 LOADING A PROGRAM INTO RUGID

After you have confirmed communications with RUGID, you can load programs from disk to
RUGID using this procedure:

1) Put RUGID in command mode, i.e., the mode in which you can edit BASIC programs. [If RUGID is
running a program, type CTRL- T three times to halt the program. RUGID should respond with 'BREAK
IN 1234 OK’, indicating the line that was interrupted. If that doesn't work, type three control K's and, after
the "WELCOME TO RUGID MONITOR..." prompt, type 'C' to transfer to command mode. RUGID
should respond with the "OK' prompt.

2) Type NEW to delete the old program. You should get the 'OK' prompt.
3) Hit the 'Pg Up' key. This will give you QMODEM's upload menu.

4) Choose option 'l" for an ASCII transfer.

5) Enter the file name you wish to transfer, e.g., " TESTPGM.CMP',

6) When asked for the transfer mode select '1', prompted.

7) When asked for a prompt, hit the RETURN (ENTER) key. At this point you should see your program
scroll up the screen line by line. This is actually the program being echoed by the RUGID. If you see error
messages, vou may have asked QMODEM to load a text source file instead of one of the files with ".CMP"
after the file name. If so, press the PGUP key to terminate the program loading process and go back to step
2.

%) After the transfer is complete, QMODEM will put you back in terminal mode wherein your keystrokes
go directly to RUGID and RUGID's responses appear on your CRT. If you want to confirm that your
program transferred, type 'LIST to have RUGID list the program to your CRT. You will have to hit the
space bar after the first line and every 20 lines thereafter. RUGID does this to keep the program from
scrolling off the screen before you can read it.

9) RUGID will attempt to use the variables that were present when you stopped your previously running
program. This will cause index errors if your new program is using array names with the same variable
name but different index ranges. If this is the case, you must type "CLEAR" to clear out all old variables
before you attempt to run the new program. Otherwise, the RUGID will use the variables present before the
new program was loaded.

10) You may now type in 'RUN' to run the program.

18

11} If you wish to stop the program, type CTRL-T three times and wait a few seconds.

2.6 CONNECTING A PRINTER (RUG6 and RUGS only)
The protected field board has a DB25 parallel printer port which is compatible with standard 1BM.

PC type parallel printer cables. Any printer having a Centronics or parallel interface can be operated with
the proper cable from this port. The cable is available from RUGID.

19

20

SECTION 3

3.0 CONNECTING AND CONTROLLING I/O

Connecting 1'O properly is the key to obtaining accurate, reliable operation from the RUGID
system. This section presents 1/0 schematics and example 'O hookups to aid in properly connecting /0O
devices such as motor starters, transducers, control switches, etc. In general, the following guidelines will
assist you in obtaining success in I/O interfacing;

1. Use twisted, shielded pair wires for low level signals (analog in, digital in, analog out).

2. Ground shields of input channels to RUGID's COMMON terminals only,

3. For analog signals, use current loops rather than voltage measurements.

4, Keep high current signals away from analog signals.

5. Keep AC or relay coil signals away from low level signals (analog inputs or digital inputs).

Refer to Figures 3.0A, 3.08, and 3.0C for field board base /0 pinouts for RUGS, RUGT and RUGS

respectively.

3.1 ANALOG INPUTS

RUGID models have varying complements of analog inputs as listed in the table below:

TABLE 3.1 BASE ANALOG INPUTS

CHANNEL RUGH RUGTY RUGS
Al%(1) 0-5 V or 4-20 ma. 0-5V or 4-20 ma. 0-5V or 4-20 ma.
Al%(2) 0-5 V or 4-20 ma. 0-5 V or 4-20 ma. 0-5 V or 4-20 ma.
Al%a(3) 0-5 V or 4-20 ma. 0-5 ¥ or 4-20 ma. 0-5 V or 4-20 ma.
Al%(4) 0-5 V or 4-20 ma. 0-5 ¥V or 4-20 ma. 0-5 V or 4-20 ma.
Al%(5) 0-5 V or 4-20 ma. 0-5 V or 4-20 ma.
Al%{6) 0-5 V or 4-20 ma. 0-5 V or 4-20 ma.
AT%(T) 0-5 V or 4-20 ma. Unregulated power 0-5 V or 4-20 ma.
AI%6(8) 0-5 V or 4-20 ma. Battery voltage Adjustable gain
AT%%(9) 0-5 V or 4-20 ma. Onboard temperature Adjustable gain
AI%(10) 0-5 V or 4-20 ma. Adjustable gain
Al%o(11) 0-5 V or 4-20 ma. Anemometer input *

* The nominal 20 mv anemometer signal is connected to AI{11) on the RUGS terminal board where it is
amplified and clipped and then routed to digital input 8 where it can be counted in counters CO%(5) LS and
CO%(13) M5. When Al%{11} is read, BASIC actually receives the unit's unregulated power voltage,

RUGT units have no analog input expansion capability bevond the analog inputs listed above.

RUGE and RUGE models can accept up to 4 analog input expansion boards, each having 16 optically
isolated analog inputs.

21

3.1.1 BASE ANALOG INPUTS

The base analog input complement utilizes a 10 bit successive approximation A/D converter
capable of up to 2000 samples per second. It includes sample and hold and channel multiplexing functions.
For most channels identified in the table above, measurement range is nominally 0 to 5 VDC with the
channel shorting bars removed, or 4-20 ma. current loop compatible with the channel shorting bars in place.

Background software samples the inputs and stores the results in the BASIC Al%() array.
Channel 1 is stored in AI%4(1); channel 2 in Al%(2), etc. The number of channels sampled is established by
the dimension of the AI%() array. Entries in the Al%() array are in the form of raw count integers in the
range of 0 to 1023, For a channel set up as a voltage input, an input of 0 volts should result in a raw count
of 0; an input of 5 volts should result in a raw count in the range of 900 to 1023. Similarly, for a channel set
up as a current input, currents of 4 ma and 20 ma should result in AI%() raw counts of approximately 650
and 3700 respectively. Note that these values can vary widely from unit to unit since the A/D reference is
5% accurate. Therefore, you must calibrate each input before accurate measurements can be obtained.
Routines for handling calibration are listed in section 3.3 below.

Interrupt software samples the A/D as often as 225 times per second. On each access, zero to 10
samples can be taken, AI%(0) is used to tell background software the sample rate and number of samples to
take on each cycle. The 2 bytes of A1%(0) are used as indicated below:

BITS MEANING

0-7 Number of 225ths of a second between cycles
8-11 Mumber of samples to take each cycle

12-15 Type of A/D converter {use 0001)

To set the sample rate, the following relationship can be used:
5S=samples per second per channel
NC=number of channels to be sampled (1 to 11)
AT%(0)=4352+int(225/(SS*NC))

Some useful values for AT%(0) are:

£1114=4372 One sample per second per channel (recommended)
$1102=4354 10 samples per second per channel

Therefore, the following statements will give you the indicated analog input sample rates:

DIM Al%%(8)

Al(0)=4372 '1 sample per second per channel
Al%(0)=4354 '10 samples per second per channel
Al%(0)y=0 'Stops analog input sampling

Note that time spent sampling analog inputs slows other processes, so sampling should be kept as slow as
possible and still meet the requirements of the application. Figure 3.1.1 presents the analog input schematic
for the main board in combination with the protected field board.

3.1.1.1 Base RUG7 Analog Inputs

As identified in Table 3.1.1, above, the RUGT has four general purpose analog inputs (Al's |
through 4) that can be set for 0-5V or 4-20 ma measurements using the channel shorting bars. In addition,

the RUGT uses analog inputs 7, 8 and 9 for internal measurements. The code segments below will give
battery voltage, bus voltage and onboard temperature within 5%,

BATTV AY(7)=Al1%(7)*.0245 'Battery voltage
BUSV AY(8)=AlI%(8)*.0245 'Bus voltage
TEMP AY(9)=AI%(9)*.742-381 'Temperature, deg F

Bus voltage can be used to detect AC power failure in battery battery backed up systems by having the
program watch for a drop in bus voltage below 13.5 volts, If the bus voltage exceeds 13.5 volts, then AC
power is present; if it falls below 13.5 volts, then AC power has failed and the unit is running from the
battery,

3.1.1.2 Base RUGS Analog Inputs

RUGS channels 8, 9 and 10 have amplifiers with user adjustable gain so that low level signals can
be sensed directly. The gain range is 1 through 240 in steps of 1,2 5, 10, 20, 60, 120, 240. RUGE channel
11 is intended for anemometer inputs. It has a clipping amplifier that converts the low level AC
anemometer input to a pulse train that is counted by counter CO%(5) LS and CO%(13) MS. What appears
in AI%(11) is the raw count of the bus voltage for power failure use. Refer to the RUGS field board layout
in Figure 3.0 C for the location of the gain step pins. To obtain bus voltage, execute the following program

segment;
BUSV AY(11)=Al%(11)*.0293 'Bus voltage for RUGS

23

TO A'D CONVEATER

2
E

=1 e e o 7'1-: ?-:;J-—{ ;J':

Transient Fitters

Al

A2

A3

Al

AlS

A7

A8

AlS

A0

, s==ss=z====¢]

H
AV

?#??**#*??L

<7 5.6V Voltage Clamps

A

NI VRY

Current Sense
Resisnrs

urrent/valiags

Current limitar
To A/D converter ®) M.
_ 220 Ohm
5.6V Clamp 2= "[ﬂrm current sanse
s = com
r;mmwtap—\& @
salacior

fo- | VIF
g&m %mm
@.

EXPANSION ANALOG INPUTS

FIGURE 3.1.1A ANALOG INPUT SCHEMATIC

24

3.1.2 EXPANSION BOARD ANALOG INPUTS

Each expansion board has 16 optically isolated analog inputs. Twelve bit resolution is obtained
using a precision voltage to frequency technique employing pulse transmission across an optical isolator for
each channel. Each channel is isolated from the other channels and from the processor by 2300 VDC. The
channels are compatible with the 4 to 20 ma. standard and require a loop current of at least 3 ma. to operate,
Circuitry on the field side of the izolator is loop powered. Background software samples the channels as
fast as possible and stores the samples in the BASIC array Al%() beginning with AI%{12), IMPORTANT:
Expansion board analog inputs are stored as the INVERSE of the current value on the analog input.
Therefore, you must perform a calculation of the form ¥Y=1/A1%() to obtain a raw count proportional to the
analog input current. The software in section 3.3 takes care of this for vou. The expansion board provides
greater accuracy than the main board converter. Figures 3.1.2A and 3.1.2B provide 'O schematics and
example connections respectively.

3.2 ANALOG OUTPUTS

There are no analog outputs included in the base RUGID units. A single analog output channel is
optional on the RUGT model. Up to 4 analog output boards can be installed in either the RUGHS or RUGE
models. Each analog /0 expansion board has 8 optically isolated analog outputs with voltage and current
loop drivers and 12 bit resolution. The optical isolators provide 2500 VDC channel to channel and channel
to computer isolation. Analog outputs are controlled by writing to the AQ%() array. The allowed range of
AO%() is 1 through 4095, Element ACQ%({1) controls the first analog output, Background software will
transfer the contents of AOQ%() to the proper analog output whenever Basic writes to the AO%() array. The
outputs are 4-20 ma. current loop compatible. The current loop drivers can withstand 100 VDC, and will
work linearly over 12 to 48 VDC loop voliages. Figures 3.2A and 3.2B present analog output schematics,
Figure 3.2C presents example connections. As with analog inputs, analog outputs must be calibrated before
accurate use can be expected. The code in section 3.3 will do this for you,

25

& H _
}I — 10 Ohn _@ "LHE2 L A%{E7)
- %W'\.I-{a o3 |
}!- E = 0 (b —@'ﬁ'lm _“ Bl%(28)
» - () sizg |
:}-z- s wom [0 428 | AI%{25)
o . =) +CHZT
i A
H -CH26
_:},t 1= 10 Ohm —) B 4
L] + () «CH25 _ e
L= | o 7T ;r no[2% 1 s
i M b bl +CHZ3
[y w1 + o [T 02 | AI%(22)
g = .) scizr |
a | 1 .
g j\! vF - 1 08m —@'ﬂﬂ L AI%(21)
- . L) sciig_|
g T[] = wom [T O] 4
E | V¥ % () +CHIT | &
E v | e | S ;Lﬂ 8 pmirg)
g el 9 . 015 |
pee e T 10 ctem i] AI%{18)
. «CH13
& H__
IF = 10 Chm ""QJ"EH!? Am“n
- {57} +CH11
:}w! - -T= 0 Ohes —E}-BHHJ _l_ Al%({18)
= * L) +CHe |
e | 17T & 0w T)
- “ o
'}I- = ;:M CHE 7] Al%{14)
s g - oCHS |
}-T.! - T 10 Ot T __ Al%(13)
o 2 3 ,‘,G‘Ha B
& “ _
e + 0 Ghe -iH2 H, MH‘E}
b +CH1 _|
FIGURE 3.1.2A EXPANSION ANALOG INPUT SCHEMATIC I 0
Avaog Field Board (AFB)

26

LOOP SUPPLY|
GND +24

@

2-Wire Transducer
]

@

FIGURE 3.1.2B EXPANSION ANALOG INPUT CONNECTIONS

27

ot D1
Soor | Y
EXPANSION ANALOG QUTPUTS
+AD
Sotors
Clock |~
Data |l | DA
s
e -
RUGT ANALOG OUTPUT

FIGURE 3.2A EXPANSION ANALOG OUTPUT SCHEMATIC

2B

*

Y]

-+

Pl

*

Tk

+*

Mli

+

iy

PR

I

i

Figure 3.2B EXPANSION ANALOG OUTPUT SCHEMATIC (RUGH & §)

29

- AO#

—

HLEE

222229
nENEEs

¥
1
y

CHART

RECORDER
4-20 ma.

LOOP SUPPLY

24 W GHD
2 @

sddess

|- it |

-

1

:
:

E R EEFEEFERFEFEREE R CEEEEE R
T
-]
§-l--

LOOP SUPPLY

w24V GHD
@ @

3§&¥52%§%g§§ :
|

FIGURE 3.2C EXPANSION ANALOG OUT EXAMPLE CONNECTIONS

30

3.3 CALIBRATION SOFTWARE

Since analog inputs from the A/D converter consist of raw counts corresponding to the analog
input values present at any time, it is necessary to convert the raw counts to meaningful engineering units
values such as feet, PSI, GPM, etc. In order to do this, the unit must be told the correspondence between
the analog input raw counts and the desired engineering units representation during a calibration phase; and
then must apply the resulting span and offset factors during realtime operation. Therefore, software
necessary for complete analog input handling consists of three routines. In these routines, AY() contains the
engineering units result of the calculation; AM() and AB() are the span and offset respectively established
during calibration; and Al1%() is the raw count from the A/D converter.

CALIN.. establishes the values of AM() and AB() for analog inputs; and sets the values of OM()
and OB() for analog outputs. This should be done when~ver the unit is changed or a sensor is changed or
adjusted in order to re-establish the correspondence between the raw counts and the desired resulting
engineering units values,

CALINIT... initializes AM() and AB() for use in the equation AY(D=AM(I}* A1%{T) +AB(Y) by
reading their values from the user protected RAM space and writing them to AM() and AB(). For analog
outputs, CALINIT reads user protected RAM and saves the values into OM() and OB(). This routine
should be exercised once each time the program is booted. The reason for keeping these values in the
protected area is so that when you execute a CLEAR to erase all variables, the calibration data will not be
effected. Otherwise, every time vou executed a CLEAR, you would have to calibrate all the analog inputs.

RTCAL...calculates the engineering units values (feet, PSI, etc.) from span and offset constants
(AM() and AB() respectively) setup by CALIN during calibration. This should be executed on each
program scan to keep the results updated for display, alarm comparison, reporting, etc. Similarly, for
analog outputs, RTCAL applies the equation AO%(I)=X*OM(I}+-OB(I) to convert an engineering units
value in X to the raw count needed by the analog output driver.

RTCAL if SP(2)=I then SP(2)=1 '"Analog sampling
X=1/8F(2) "SP(2)=Filter time constant
for I=1 to 24 24 analog inputs...
Y=AT%(I} "(ret analog input raw count
if ¥=0 and I=11 then ¥Y=K3 "Head off div by zero for expAl's

i 1<12 then AY(D=(AY(D+X*(Y*AM(D+ABIN)V(1+X) 'LPF base Al's
ifT=11 then AY(D=(AY(D+X*(AM(IVY+AB(D))V{(1+X) 'LPF expan Al's

if AY(I)>K3 then AY(I)=K3 "Watch high range...K3=32767
if AY(D)<0 then AY(D)=0 "Watch low range
Y=AY()*HU " 100 for TLM...HU=100

if Y=K3 then Y=K3 "Range limit

AR%(1,149)=Y "Save to TLM

next

forl=1to 8 "MNow for § analog outputs...
X=0OM(I* AR%{1,I+6)HU+OB(I) 'Get tank level & make raw count
if X<1 then X=1 "Watch range for AO's

if X>K4 then X=Kd4 ‘Limit max to 4093

AD%{[)=X next "'Send to AD%

return

31

'"CALMAN calibration routines
"Interacts with user to gather coefficients for 2 point calibration

'For analog input calibration:

: M and B are stored in AM() and AB() respectively

To avoid losing cal when editing program, the calibration

constants are stored in the reserved area from

S1F00 through $1FFF, These are loaded by CALINIT upon

boot up. A total of 32 analog channels can be stored in this

area, This routine allocates space for 24 analog inputs, and

& analog outputs. They are arranged thus;
$1F00-$1F03=AM(1)*65536
$1F04-$1F07=AB(1)*65536
S1F08-51FOB=AM(2)*65536

$1FC0-81FC3=0M(1)*65536
S1FC4-$1FCT=0B(1)*65536

"In realtime operation, result would be:
: result(Ty=AM(T)* AT%(T)H+AB(I) for inputs 1 to 11
L result(T=AM(TYAI%(D+AB(I) for inputs 12 and up.

'For analog output calibration:
. M and B are stored in OM() and OB() respectively

'In realtime operation, result would be:

' AO%(T)=OM(I)* value(T)+OB(I)

'CALINIT reads reserved user area and gathers saved cal coefficients.
t Should be executed at beginning of program.

CALINIT forI=1 to 11
1=({1-1)*8:zosub CALRAMINX
AM(D=X/65536
I=(1-1)*8+4:gosub CALRAMINX
AB()=X/65536
next
forl=1to 4
1=(1+23)*8:gosub CALRAMINX
OM([)=X/65536
[I=(1+23)*8+4:gosub CALRAMINX
OB{[=X/65536
next
retum

CALRAMINX J=T936+11
X=peekiJ)+256* peek(]+1)+65536* peek(J+2)
X¥=peek({]+3) and 128
II=peek(]+3) and 127
K=X+16777216%(I1)
if XX=0 then retumn
X=-X:return

32

"Gt AM() cal value to X
"Scale down and save
'Get AB() cal value to X
'Scale down & save

‘Get OM) cal value to X
‘Scale down & save
‘Get OB() cal value to X

'Get X from reserved area, byte J

'Get sign
'‘Get MS byte, no sign

CALRAMOTX J=7936+I1:11%=0
if X<0 then 11%=128:X=-X
X=X*65536:XX=int(X/16777216)
X 1%=XX and 127 or 11%:poke J+3,X1%
X=X-XX*16777216:X1%=int(X/65536):poke J+2,X1%
X=X-X1%*65536:X 1 %=int{X/256):poke J+1,X1%
X=X-X1%*256:poke J,int(X):return

CALMAN gosub CLRSCREENC
print "Calibration routine..."
print "Enter | for analog input.”
print "Enter () for analog output.”
MORI get AS
if len{A%)=0 goto MOR.1
if A$="1" goto CALIN
if A$="0" goto CALOUT
goto CALDONE

CALIN gosub CLRSCREENC
print "Enter input channel to calibrate."
print "Allowed range is 1 through 11, 0 exits":input X
if X<1 or X>11 goto CALDONE
CH=int(X)
print "Apply known low value to analog input”;CH
print "Key in corresponding engrg. units value.";input X
Al=X:AZ=Al1%({CH)
print "Apply known high value to analog input";CH
print "Key in corresponding engrg. units value."input X
A3I=X:Ad=AI%(CH)
if CH>11 and A2<] goto CALINERR
if CH=>11 then AZ=1/A2:Ad=1/A4
if abs(A2-Ad)y=.000001 goto COMPUT
CALINERR print "Input value error...restarting cal.”
for 1=1 to 1000:next
goto CALIN
COMPUT M=(A1-A3)(A2-Ad)
B=Al-M*A2

"Wow show result of this calibration
gosub CLRSCREENC
AZ2=100:A3=0.5
CALOOP CR%=0:CC%=0
print "Present AI";CH;"=";AI%(CH)," "
if CH=12 then A l=int{{M* AIM(CH+B)*AZ+ATNA2
if CH>11 then Al=int{(M/A1%{(CH)+B)*A2+A3)VA2
Pl‘int "E-ngrg. "l'ﬂlllE=";.|“1 1 ;1| "
print "Key in 1 to save"
print "Key in 2 to discard”
CALI get AS
if len{ A%)=0 goto CALOOP
if AS="1" goto CALIN
AM(CH}=M:AB(CH)=B
X=AM({CH):1I={CH-1)*8:gosub CALRAMOTX

33

'Save X to location in reserved area, byte J

'Get sign of X

"MS byte (1)
Byte (2)**+%+
1B}"'E' {j)ﬂ'lﬂiﬂ
'LS byte (4)

'return 1f not 0 or |

'Save channel we're calibrating

*Save it and A/D output

'Save it and A/D output
"Watch for zero input
"1/AI%(I) if expansion A/D

‘Delay

'Compute M
‘and B

'Clear the LCD

"Use for significance control
'Set display cursor location
'Show user A/D input
'Control significance
"Expansion Al's

"Show resulting value

"Watch for keystroke

'Save coefficients
'Put in reserved area

X=AB(CH}II=(CH-1)*8+4:gosub CALRAMOTX 'Ditto

goto CALIN 'Return for more
CALDONE print "Exiting calibration routines."

for I=1 to 1000:next:retumn 'Delay & exit
CALOUT gosub CLESCREENC

print "Enter output channel to calibrate,”
print "Allowed range is 1 through 8, 0 exits.":input X
if X<I or X>8 goto CALDONE

CH=mt{X) 'Save channel user wants to cal.
Al=600 Tnit AD low value

OUTLOOP AO%(CH)=A 'Send value out
gosub CLRSCREENC

print "A value of ";A1;"is now present on AO";CH
print "Key in a new value to geta "
print "convenient low analog output level.”
print "A negative value continues process.":input X
if X>=0 then A1=X:goto OUTLOOP
print "Key in the engre units value now"
print "present on analog output”;CH:input X
A2=X
A3=3800
OUTLOOP] AD%(CH)=A3 ‘Send value out
gosub CLRSCREENC
print "A value of";A3;"is now present on AQ";CH
print "Key in a new value to get a”
print "convenient high output level.”
print "A negative value continues process.";input X
if X==0 then A3=X:goto OUTLOOP]
print "Key in the engrg units value now"
print "present on analog output";CH:input X
Ad=X 'Get 2nd engrg value
if abs(A2-A4)>.000001 goto COMPUTO
print "Input value error...restarting”

for I=1 to 1000:next Delay
goto CALOUT

COMPUTO M=(A1-A3)(A2-A4) ‘Compute M
B=Al-M*A2 ‘And B

"Now allow user to adjust AD and observe

OUTLOOP2 gosub CLRSCREENC

Al=int{A3+0.5) "Watch roundoff
if Al<0 then A1=0 ‘Keep AQ%>=()
AO%(CH)=A1 ‘Send to analog output

print "Present AO%";CH;"=";Al

print "Present engrg units value is";A4

print "Key in new EU value for verification.”

print "Negative value exits verification mode.":input X
Ad=XCA=M*X+B

if X>=0 goto QUTLOOP2

print "Key in 1 to save”

print "Key in 2 to discard calibration.”;input X

34

if X<>1 goto CALOUT
OM(CH)=M:OB(CH)=B

X=0OM{CH):I=(CH+23)*8:gosub CALRAMOTX 'Save to reserved area
X=0B(CH):I[=(CH+23)*8+4:gosub CALREAMOTX "Ditto
goto CALOUT

3.4 DIGITAL INPUTS

The RUG6 protected field board has 16 dry contact or logic compatible digital inputs. RUG7 and
RUGE models have & channels each. Each digital 1/ expansion board has 32 digital inputs. Background
software samples each digital input whenever BASIC accesses the DI%() array. All digital inputs are
mapped into DI%() beginning with DI%(1) and continuing until the array dimension is exceeded. A contact
closure or low logic level on the digital input will result in a 1 in DI%(); an open contact or logic high value
will result in a 0 value in DI%(). Figure 3.4A presents the RUG6 digital input schematic. Consult Figures
3.0A, 3.0B, and 3.0C for digital inputs examples for RUGS, RUGT, and RUGS, respectively. Figure 3.4 B
presents example connections for expansion digital inputs. Note that all units have one LED per channel
and 100K ohm isolation resistors. The resistors protect the inputs from voltage reversal and excessive

voltage.

Linreg 12 VDC

3K Ohm
lup

To DI%0) —E-<IJW\4 Q) on, 2.
e 100K Ohm

Transigmnt
T Fiter

l|_® oM

v

DIGITAL INPUTS

FIGURE 3.4A DIGITAL INPUT SCHEMATIC

is

A#,##### ;AL#A#AfA#J# Aff#Lf,ffff,
[y ——

BODOBRD0D DDDopDODODDDDR OoDOopopoooo

|

36

FIGURE 3.4B EXPANSION DIGITAL IN CONNECTION EXAMPLES

3.4.1 DIGITAL INPUT PULSE COUNTING

Background software will count high to low transitions of the digital inputs and store the counts in
array DX%(). The inputs are sampled 225 times per second. The number of digital inputs sampled is
established by the dimension of the DX%() array, but is limited to 64 total. The counts can be read by
BASIC by reading the DX%() array. The counts can be preset by writing to the DX%() array. If the count
exceeds 32,768 the value will become negative, but counting will continue. This capability is useful for
measuring values from pulse type flow meters and for trapping momentary button pushes by operators, To
detect a momentary button push or switch closure, instead of watching the digital input, have the Basic
program watch for a nonzero value in the DX%() entry corresponding to the digital input connected to the
switch. When the DX%() value is nonzero, the button has been pushed. Write a zero into the DX%() entry
to reset it for the next switch closure,

3.4.2 PULSE DURATION I/O
3.4.2.1 PULSE DURATION INPUTS

In addition to counting pulses occurring on the digital inputs, RUGID can convert pulse duration
inputs present on digital inputs 1 through 8 to analog values proportional to the time the digital input is
wrned on. Basically, RUGID background software looks to see if the array PD%() is dimensioned. 1f so,
the first 8 digital inputs are sampled 56 times per second. When a digital input turns on, a counter is started
and allowed to run until the digital input turns off, At that time, the counter value is transferred to the
PD%() array, indicating how many 56ths of a second the input was on. All that is necessary to initiate this
mode is to dimension the PD%() array.

3.4.2.2 PULSE DURATION OUTPUTS

Digital outputs | through § and 17 through 48 can be made to Benerate repetitive variable duty
cycle pulses by writing to the DU%() array. Array element DU%(0) sets the repetition rate in 56ths of a
second; and elements DU%(1) through DU%(48) set the period, in 56ths of a second, within the repetition
interval that the corresponding digital output is energized. Any digital outputs for which the DU%({) entry is
zero are uneffacted by this operation. Those outputs for which DU%() has a nonzero entry will turn on at
the beginning of a cycle. Each will turn off as its individual timer times out based upon the value in its
DU%() entry. The following example program segment illustrates the operation:

DU%{0)=15*56 'Set overall cycle interval to 15 sec.
DU%(3)=3.9*56 ‘Output 3 on for 3.9 sec.

DU%(4)=12.3%56 'Output 4 on for 12.3 sec.,

In this example, every 15 seconds digital outputs 3 and 4 will turn on simultaneously. After 3.9 seconds,
output 3 will turn off. After 12.3 seconds, output 4 will turn off. The range of the DU%() entries is 1/56
second (17.86 ms) to 32767/56 seconds (9.75 minutes).

If DU%{0)=0, the digital outputs act as individual one-shots, not triggered by an overall cycle. In
that case, any DU%() entry set non-zero will turn on immediately and tumn off after its individual timer has
timed out, independently of the other outputs,

37

3.4.3 OPTICAL ENCODER INTERFACE (ACRO Transducers)

The first 8 digital inputs can be set up to interface with up to four ACRO encoders by
dimensioning the AC% array. A pair of digital inputs is required for each encoder. The encoders must be
set up to give position pulses on one output and direction indication on the other, They must be connected
to the RUGID digital inputs with the position pulses coming in on the odd digital inputs (DI%(1),
DI%4(3)...), and the direction indications coming in on the even digital inputs (DI%{2), DI%(4)...). For
example, to connect a single ACRO transducer to the RUGID, connect its pulse output to digital input
D1%4(1) and its direction output to digital input DI%(2). The position will then be indicated as a count in
array entry AC%(1) and will increase with clockwise rotation. Entries in AC%() indicate the number of
transitions sensed from the encoder pulse output, not the number of pulses. These are integer numbers that
must be multiplied by the distance represented by each pulse transition, and offset by the initial count in
AC%({) to obtain engineering units values. Be sure that the slew rate of the transducer shaft is not so fast
that pulses narrower than 10 ms result or they could be missed. Note that since the encoders generally put
out a 0 to 5 volt logic signal, in order to avoid harming the transducer, the LED should be clipped out on any
digital input channels connected to the transducers, and to avoid capacitive loading, each channel's surge
protection capacitor should also be removed.

3.4.4 RUGS PULSE COUNTING DURING SLEEP MODE
The RUGS has a processor that remains munning during SLEEP mode to count time and input

pulses. When the RUGS is awake, the array CO%() is used to set and read the counters as defined in the
following table:

38

.

Table 3.4.4 PIC COUNTER CO%() ENTRIES

CD%{) ENTRY FUNCTION
CO%(0) DI #8 up counter, LS
CO%(1) DI #7 up counter, L5
CO%(2) DI #6 up counter, L5
CO%(3) DI #5 up counter, LS
CO%(4) DI #4 (tipper bucket) up counter, LS
CO%(5) Alll (anemometer) up counter, LS
CO%i(6)
CO%(T)
CO%(8) DI #8 up counter, MS
CD%i(9) DI #7 up cournter, M3
CO%(10) DI #6 up counter, MS
CO%(11) DI #5 up counter, MS
CO%(12) DI #4 (tipper bucket) up counter, MS
CO%(13) Alll {anemometer) up counter, M5
CO%{14)
CO%(15)
CO%%{16) DI #8 down counter
CO%(1T) DI #7 down counter
CO%(18) D1 #6 down counter
CO%(19) DI #5 down counter
CO%{20) DI #4 (tipper bucket) down counter
CO%(21) Alll {anemometer) down counter
CO%(22)
CO%(23) Sleep timer, one count per second
CO%{24) DI #8 encoder #2 down counter
CO%(25) DI #7 encoder #2 up counter
COY%{26) DI #6 encoder #1 down counter
CO%{2T) DI #5 encoder #1 up counter
CO%(28)
CO%(29)
CO%{(30)
CO%(31)

3.5 BASE DIGITAL OUTPUTS

The base digital output complement consists of relay driver digital outputs capable of driving up to
100 ma, each when all are on, or up to 500 ma. when only one is on. They are compatible with up to 48 volt
relays. Most channels are equipped with a 10 amp relay per channel with an LED per channel. Digital
outputs can be controlled by writing to array DO%(). Array element DO%(1) controls the first digital
output. Writing the following values cause the following actions:

DO%s()= ACTION

0 Relay off

1 Relay on

2 Relay flashes on/off every 1/2 second

39

The following table defines the functions of the relay drive channels for the different RUGID models:

Table 3.5 RUGH, RUGT, RUGE RELAY CHANNELS

DO%() CHANNEL RUG6 RUG7T RUGS
DO%(1) RELAY #1 RELAY #1 RELAY #1
DO%(2) RELAY #2 RELAY #2 RELAY #2 7

DO%(3) RELAY #3 RELAY #3 RELAY #3
DO%I(4) RELAY #4 RELAY #4 RELAY #4
[DO%(5) RELAY #5 ON=puts unit to sleep
DO%({6) RELAY #6
DO%(T) RELAY #7 ON=Enable hi rate
battery charge
DO%%(R) RELAY #8 ON=tumn on display
backlight

Figure 3.5A presents a digital output relay drive schematic.

12 VDC
[el
c
From DO%
Logic NG

RUGE/B RELAY OUTPUTS

Unreg 12 VDC
From DO%

Fplom
f—@ C
Logic
RUGT RELAY OUTPUTS

FIGURE 3.5A MAIN BOARD DIGITAL OUTPUT SCHEMATIC
3.5.1 EXPANSION DIGITAL OUTPUTS

For RUGH's and RUGH's, the digital output complement can be expanded by adding one or more
digital output expansion boards inside the card cage, and attaching a digital field wiring board (DFB)to

A0

each. Each digital output expansion board/digital field wiring board combination adds 32 digital output
relay drivers. The drivers are capable of driving up to 48 volt DC loads at up to 100 ma. each. The first
digital output on the wiring board, labeled CH1, can be controlled by writing to DO%(17), CH2 can be
controlled by writing to DO%(18), etc. Note that the drivers are open collector Darlington drivers that sink
current to ground when energized. Figure 3.5.1 illustrates the proper connections for relays, lamps and LED
indicators.

41

DG PWR SUPPLY
1K

GND
e

- T ke

wwwwummuuruﬁ sRYNReeEEese ﬁnmanrus4mm_
L

555555805 G555555555805 C55555585

eeceeeeeems 9858688800888 (88688888888

ODOOODOR QOONOODOOONOR odooooooonoon

e

FEEE

e0eResd
(= === =T =]
$5833323

FIGURE 3.5.1 EXPANSION DIGITAL OUTPUT CONNECTIONS

42

3.5.2 EXPANSION RELAY OUTPUTS

For greater drive capability than the relay drivers discussed above, RUG6"s and RUGS's can
employ relay field boards (RFB's) instead of the digital field boards (DFB's). Each RFB has eight 10 amp
relays and its own relay drivers and LED's. Up to four RFB's can be daisy chained together and connected
to one MIO or DIO in the card cage. Therefore, one unit can be expanded by as much as 128 relays above
the base relay complement.

3,53 PULSE DURATION OUTPUTS

Digital outputs 1 through 8 and 17 through 48 can be made to generate repetitive variable duty
cycle pulses by writing to the DU%({) array. Array element DU%(0) sets the repetition rate in 56ths of a
second; and elements DU%(1) through DU%(48) set the period, in 56ths of a second, within the repetition
interval that the corresponding digital output is energized. Any digital outputs for which the DU%{) entry is
zero are uneffacted by this operation. Those outputs for which DU%() has a nonzero entry will turm on at
the beginning of a cycle. Each will tum off as its individual timer times out based upon the value in its
DU%() entry. The following example program segment illustrates the operation:

DU%{(0)=15*56 'Set overall cycle interval to 15 sec.
DU%(3)=3.9*56 'Output 3 on for 3.9 sec.

DU%{4)=12.3*56 'Output 4 on for 12.3 sec.

In this example, every 15 seconds digital outputs 3 and 4 will turn on simultaneously. After 3.9 seconds,
output 3 will turn off. After 12.3 seconds, output 4 will turn off. The range of the DU%{) entries is 1/56
second (17.86 ms) to 32767/56 seconds (9.75 minutes),

If DU%{0)=0, the digital outputs act as individual one-shots, not triggered by an overall cycle. In
that case, any DU%() entry set non- zero will tumn on immediately and turn off after its individual timer has
timed out, independently of the other outputs.

3.6 LCD DISPLAY

The RUGE LCD display is a 64 dot by 256 dot display capable of displaying 8 lines by 42
characters, or presenting plotted data. Upon power application, the display will be in the graphic mode. In
this mode, all graphic and character modes described below are supported. Characters may be interspersed
with plotted data by writing character data after the plot is done. In EPROM versions 3.2V and later, a
character mode is added that does not support graphics but presents character data to the display more than
nine times faster than the graphic mode, and enables access to the kana and Greek character set built in to
the LCD driver. The display mode is controlled by the MSB of location $0225 (549), which should be
poked by BASIC and followed by a form feed character (chr$(12)). The following code segments can be
used to set the two modes:

To set graphics mode:
CLRSCREENG poke 549,0:PO%=0:print chr$(12);:CC%=0:CR%=8return

To set character mode:
CLESCREENC poke 549,128:PO%=0:print chr$(12);:CC%=0:CR%=0:return

43

The modes can be set at any time. Generally, its best to leave the display in character mode unless you wish
to trend to the LCD. For more detail on the character mode see paragraph 3.6.7.

3.6.1 CONTROLLING CONTRAST

Display contrast may vary with temperature so it may need adjusting from time to time. You can
adjust it by holding the "8" key and the decimal point (".") keys down simultaneously; or holding the "9"
key and the decimal point down dimultaneously. It is also software controllable by writing to the contrast
register at location $0216 (534). The range of values permissible is 0 through $1F (31). There is
approximately | second delay between the adjustment by keyboard or by controlling the contrast register, so
you should adjust the contrast in small increments and wait for the contrast to settle. The contrast register
value will be retained through a power outage.

3.6.2 WRITING TO DISPLAY

You can write to the display by setting PO%=0 and then executing the PRINT statement. For
example, to print "Hello" on the LCD, execute the following:

100 PO%=0:PRINT "Hello”
3.6.3 CLEARING THE SCREEN

You can clear the screen by writing a form feed to the LCD as follows. Its best to use the
CLRSCREENG or CLRSCREENC subroutines above since they also establish the display as being in
graphic or character mode also, and return the cursor to the top of the screen.

100 PO%:=0:PRINT CHRS(12)
3.6.4 CONTROLLING THE CURSOR IN GRAPHIC MODE

Characters directed to the display will be written to the dot locations specified by writing to
variables CR% (cursor row) and CC% (cursor column). The cursor position specifies where the lower left
comner of the next character will be written, Each character written will cause the cursor location to
increment by 6 dots (one character width). A line feed will cause the cursor to move down 8 dots; and a
carriage return will move the cursor to the left side of the current line. The upper left corner of the display
is location CR%=0 and CC%=0. The cursor position cannot be read by reading variables CC% and CR%.
Instead, a peek to the following locations must be done:

Column position=peek(1235)
Row position=peek(1236)

The following table gives useful locations on the display:

LOCATION CR% (row) CC% (column)

Upper left corner 0 0
Text line 1 8 0
Text line 2 16 1]
Text line 3 24 0
Text line 4 32 0
Text line 5 40 0
Text line 6 48 0
Text line 7 56 0
Text line 8 64 0
Lower left comer 64 0
Upper right corner 0 255
Lower right corner 63 255
Center of display 32 127

As an example, if you wish to write "Hello" beginning at the horizontal center of the display on text line 6,
you could use the following statements:

100 PO%=0

110 CR%=48:CC%=127
120 PRINT "Hello"

45

GRAPHIC MODE LCD ADDRESSING

CO%=0 GG %54 DC%=128
cRi=8]_| |

!...

CHARACTER MODE LCD ADDRESSING

CC%e=0 CC%=10 GO%=20 CC %30
CR%=0 | | | |

ChYe=3]

T . . ! 5 .: ;

GRAPHIC MODE LCD ADDRESSING FOR TRENDS
CC%=l Ch%=hd CC%=128 CC%=182
CA%=8 100 TYPICAL TREND

cAm-3z] PRESS=92 PSI

CR%=564

FIGURE 3.4 LCD CURSOR POSITIONING EXAMPLES
3.6.5 PLOTTING DATA (GRAFHIC MODE ONLY)

The PLOT function can be used to plot data horizontally on the LCD. Plots with 256 bit horizontal
resolution and 64 bit vertical resolution can be produced. Generally this will be used for amplitude versus
time plots that simulate strip chart recorders, with amplitude on the vertical scale, and time on the horizontal
scale. Fixed point arrays P1%(1), P2%(I), and P3%([) contain the data that will be plotted when the PLOT
function is invoked. The location of the lower left hand corner of the plot axes is specified by the cursor
control variables CC% and CR% as indicated above. The plot will occupy the portion of the display above
and to the right of CC% and CR%, extending to the right until the end of the display is reached or the end of
the P1% array is reached. Therefore, the entire display will be occupied by the plot if the lower left hand
cornet is specified for the origin (CR%=63:CC%=0), and P1% is dimensioned as DIM P1%(256). By
specifying a value greater than zero for CC%, space will be reserved to the left of the plot for scale values,
ete. It is generally recommended that space not be reserved below the plot since that will diminish the
vertical resolution of 64 dots.

46

The values contained in the arrays P1%, P2% and P3% must be in the range of vertical resolution
of the plot to avoid incorrect plot results. If the plot is specified with CR%=63, then values contained in the
arrays must be in the range of 0 to 63. The leftmost value plotted will be that contained in location 1 of the
arrays, e.g., P1%(1). P1% will always be plotted with a solid line. P2% and P3% can be plotted solid or
hatched by specifying an 8 bit mask in locations P2%(0) and P3%(0) respectively. Note that if P2%4(0)=0,
then P2% will be blank; if P2%(0)=255 then P2% will be shown as a solid line. The system will present a
vertical line with alternate dots on if a value of 128 is added to the normal value of an entry. This is useful
for showing a time tick. The following example will use P1% to plot a cosine wave, P2% to show the 0
value of the cosine wave, and P3% to indicate the sign of the cosine wave. A time tick is shown on dot 31.
An 8 character wide area is reserved to the left of the plot for text,

DIM P1%(256), P2%(256), P3%(256)

P2%{0)=127 '7 bits on, one off hatch
P3%(0)=255 'Sign plot solid

FOR =1 to 256

P1%(1)=30+25*COS8(1/10) '"The cosine save
P2%(1)=30 'The 0 value of wave
IF P1%([)=>P2%(I) THEN P3%(1)=5 "Wave above 0

IF P1%(1)<P2%(1) THEN P3%(I}=2 "Wave below zero
NEXT

P1%(31)=P1%(31)+128 ‘Time tick

CC%=48 'Reserve 6X8 dots for text
CR%=63 'Full height plot
B=PLOT(1) 'Call plot funetion

3.6.6 PLOTTING BARGRAPHS (GRAPHIC MODE ONLY)

Bargraphs can be plotted to the LCD by using the builtin graphic characters CHR$(138) through
CHR$(143). The following code segment (BARGRAPH.LIB) will produce a horizontal bar 8 pixels high
with the bar length equal to X. Figure 3.6.6 below presents the graphic character set implemented in the
RUGILY's graphic display mode.

47

e | CHRS(126) n CHRS(132) I CHRS(138)
&= | cHrs(127) l CHRS$(133) I CHRS(139)
- | chrs(i2s) | ormsciag l CHR$(140)
oJ | cimsiize L CHRS(135) I CHRS(141)
4k | cHrscia0) | chRscase l CHRS(142)
W | cHrs(an) I- CHR$(137) . CHRS(143)

Figure 3.6.6 GRAPHIC CHARACTER SET

'BARGRAPH.LIB...routine to plot X as bargraph

'Starts plotting from present cursor position

"Does NOT range check X.

'If bar is to start other than at the left side of the display,

'then the '250' in BAR2 should be diminished by the number of
'pixels the start of the bar is offset from the left of the LCD.

BARGRAPH PO%=0:Y=int{X/6) "Plot X as hor. bar starting from cursor
¥Y=int{X-Y™*6) "Y=solid blocks, Y Y=pixels extra
if Y<I goto BAR1 "Watch for no solid blocks
for 1=1 to Y:print chr8({143);next 'Solid part of bargraph
BAR1 if YY=0 goto BAR2 'Any partial?
print chr$(137+YY); 'Show partially filled character
BAR2 X=int((250-Y*6)0) "# chars to blank after bar
if X<1 then return
for I=1 to X:print " ";:next:return "Blank rest of bar

3.6.7 LCD CHARACTER MODE

On EPROM versions 3.2V and later, the system supports a character mode that provides faster
character writing to the display and enables access to the display's special kana and Greek characters. This
mode does not support trend plotting and bargraph displays. It can be enabled by executing the following
subroutine:

To set character mode:
CLRSCREENC poke 549,128:PO%=0:print chr$(12);:CC%=0:CR%=(:return

48

This routine will install the character mode, clear the LCD, and set the cursor to the upper left corner of the
display. Note that cursor control is different for this mode. Since only characters can be written, the range
of cursor control variables is CC%=0 to 40, CR%=0 to 7. The cursor position cannot be read by reading
variables CC% and CR%. Instead a peck to the following locations must be done:

Column position=peek{1235)
Row position=peelk(1236)

3.6.7.1 ACCESSING SPECIAL CHARACTERS

With the character mode, the LCD's builtin character generator is used to write the screen, enabling
access to the kana and Greek characters listed in the table in appendix X. To provide for access to these
characters using standard ASCII codes, the RUGID operating system can be made to translate the ASCII
codes beginning with the [@] symbol up to the special character area by writing a value into location $0225
(549) that is added to the ASCII code to specify the special character code. (A value of 80 is also added by
the operating system to extend the translation range.) The following example will translate the ASCII codes
up to the first column of kana codes, enabling the four columns of alpha ASCII codes to access the four
columns of kana characters:

poke 549,128+16

In this example, the [128] maintains the character mode, the [16] tells the operating system to add 16+80 to
the alpha character codes before writing to the LCD.

3.6.8 DISPLAY BACKLIGHT CONTROL (RUGT ONLY)

RUGT models are equipped with backlit displays. To control the backlighting, execute the
following lines:

D480 "Turns backlight OFF

D81 "Turns backlight ON

or DO%(8)=2 '‘Makes backlight flash on and off
3.7TKEYBOARD

The 16 key membrane keypad interfaces to the unit using a ribbon cable. The following table
presents the ASCII codes generated by the keyboard and presented to BASIC in normal operation:

KEY ASCII CODE

ER =T - - - T S PR S R
OO =1 3 on B R — D

-
-

49

Up arrow u
D

Down armow
ENTER CR
CLEAR C

In addition, certain key combinations have special meaning;

KEY COMBINATION MEANING
ey g LCD contrast up
nr4g - LCD contrast down

Figure 3.7.1 presents the standard keyboard arrangement.

8 X 40 CHARACTER | ENTER
GRAPHIC LCD | CLEAR |

(o][1][2][3][4][5]l6]l7])(8ll9)[.]]¥

FIGURE 3.7.1 KEYBOARD

3.8 SERIAL PORTS

Each unit has a single serial port in the main board that is configured as R8232. This port is
generally used for program loading and accessing the unit from a local terminal or computer. You access
this port from BASIC by setting PO%=1 and then using the PRINT command. If you have ordered the
modem option, the unit will have a second serial port that you access by setting PO%=2 and then using the
PRINT command. This port can be configured as RS232, 2-wire modem or 4-wire modem as defined in
section 3.8.3.

50

3.8.1 COMMUNICATIONS OPTIONS SETTING

Serial port data rates and other options can be set from the monitor mode by hitting the Z key and
then responding to the prompts as necessary to establish the desired communications operating parameters,
These options and others can also be set under software control. The easiest way to set modem port
parameters is to use the DIAGNOSX.CMP program, delivered with the unit. The table below defines the
communications options present in the unit as delivered:

Parameter Terminal Port Modem port
Baud rate 9600 300

Word length 8 Dits 8 bits

stop bits 1 1

Parity Disabled Disabled
Modem function -— Answer
Interface R5232 Bell 103

Be careful of altering the data rate using a terminal, as that would make communications with the
terminal impossible unless the terminal data rate is altered to match. All communications parameters are
kept in voted nonvolatile memory and loaded into the UARTS upon power application and other times as
necessary to support communications. The following sequences illustrate the process of setting up the
terminal port to operate at 2400 baud with even parity, an 8 bit data word, and one stop bit.

1} Hit Z key in monitor mode.
2) RUGID computer displays the existing setup:

MODEM: 300 BAUD; | STOP BIT; ANSWER
8 BIT WORD; ODD PARITY...CHANGE(Y/N)?(N)

(The N says we do not wish to change the modem setup.)

TERMINAL: 9600 BAUD; | STOP BIT
8 BIT WORD; ODD PARITY...CHANGE(Y/N)X(Y)

(The Y says we wish to change the terminal setup.)
3) RUGID computer displays:

ENTER A NEW BAUD RATE: (2400)
(The '2400' selects 2400 baud.)

4) RUGID then displays:
SELECT # STOP BITS: 1 OR 2 (1)
5) Next RUGID displays:

SELECT WORD LENGTH: 5, 6, 7, OR 8 BITS (8)
(The 8 selects an 8 bit word length.)

51

6) Finally, RUGID displays:

SELECT PARITY: 1=DISABLED, 2=0DD
3=EVEN, 4=MARK, 5=SPACE (3)

(The '3' indicates we want even parity.)
7) RUGID will display "DONE" when finished,

The new communications parameters will take effect immediately upon entry of the parity selection. Had
we been configuring the modem port, additional inquiries to establish the modem's mode of operation would
have been made as follows:

SELECT MODEM FUNCTION: A=ANSWER
B=ORIGINATE, C=HI TONES, D=LOW TONES
E=AUTOSET (E)

(The A response sets the modem for automatic tone setting depending upon whether the modem answered
or originated an autodial/autoanswer call,)

Again for the modem only, RUGID will prompt:

SELECT # RINGS FOR AUTOANSWER
USE 0 FOR NO AUTOANSWER (3)

The 3 will cause RUGID background software to answer on the third ring.

You should use the ANSWER mode if the RUGID computer is to be called by another computer or modem:
the ORIGINATE mode if the RUGID computer will be calling another computer; and HI TONES or LOW
TONES if you wish several computers (more than two) to communicate among each other bidirectionally.
For radio use, or for applications where RUGID's are to talk to one another, you should use LOW TONES
to minimize the effect of companders, and to enable any unit to talk to any other. Note that since HI
TONES and LOW TONES options use only one frequency pair or the other for communications, only half
duplex communications will be possible. Also, the AUTOSET mode only applies to communications in the
monitor mode,

Each port has separate 80 character receive and transmit ring buffers that are accessed by the
interrupt process as well as the BASIC interpreter. When writing the transmit port, BASIC fills the buffer
and the interrupt process empties it at the UART compatible rate. When reading the port, the interrupt
process writes the buffer from the UART at the UART compatible rate, and BASIC can then read it. This
minimizes the possibility that data will be lost at high data rates. Variable PO% controls which port is
currently open according to the following table:

PO% PORT IN USE
0 LCD display and keyboard
| Terminal port

2 Modem port

3 Printer

4 Speech synthesizer

5 Touch tone detector/dialer

52

3.8.2 COMMUNICATIONS WATCHDOG

If a character has not been received on a serial port within the last 255 seconds, a software
watchdog will re-initialize the UART associated with that port. Therefore, programs that expect to receive
data infrequently on port 2 should retrigger this watchdog frequently by executing the following statement:

100 POKE 1146,255

3.8.3 SELECTING PORT TYPE ON MODEM BOARD

You can control the connection of the modem board's UART, modem and speech synthesizer by
sending appropriate control characters out port 5. The characters sent select the connections as specified

below:

SELECTION

ToOTMEOOm s

Some useful commands follow:

100 PO%=5
110 PRINT "A"

120 PRINT "E"

130 PRINT "G"

140 PRINT "F"

UART/RUGE MODEM SPEECH
TONE SELECT
Modem/Bell 2-wire 4-wire
RS422/ALERT 2-wire 4-wire
R&232 2-wire 4-wire
None 2-wire 4-wire
Modem/Bell d-wyire 2-wire
RS422/ALERT d-wire 2-wire
RS232 4-wire 2-wire
None 4-wire 2-wire
'Select port 5
"Standard dialup modem connection
"Speech sent to radio transmitter
'Modem connected to radio,

'Speech connected to dialup system

'Local R5232 serial connection,
"Speech connected to dialup system

"JART to local R8422 network
'Speech connected to dialup system
3.5.4 TRANSMITTER KEYING CONTROL

You can confrol the transmitter keying circuit on the modem board by PRINTing to port 5 as

follows:

100 PO%%=5
110 PRINT "Z"
110 PRINT "T"

"Transmitter off
"Transmitter on

If you are using the CRC-secured communications (see section 5) over the 4-wire port, the transmitter is
controlled automatically by background software and should not be controlled directly by BASIC using the

POKE's above.

53

3.8.5 TOUCHTONE DIALING

To control the touchtone generator you must first have the modem connected to the 2-wire port
(e.g., PO%=5:PRINT "A") because the modem chip has the touchtone generator. Then use the PRINT
command to send the digits to be dialed to the touchtone generator. The following program segment will
cause the number 555-1234 to be dialed:

100 PO%=5 "Select touchtone port for PRINT
110 PRINT "A" "Modem connected to 2-wire channel
120 PRINT "5551234" 'Send the digits

3.8.6 DETECTING DIAL TONE, BUSY, TOUCHTONES, RINGING

Dialtone and busy signals are detected by the modem IC, whereas touchtones are detected by a
dedicated touchtone digital filter IC that is continuously monitoring the 2-wire interface. Therefore, you
can detect touchtones at any time, but in order to detect dial tone and busy signals, the modem IC must be
connected to the 2-wire interface. To read the status of the tone detectors, set PO%=5 and execute a GET
AS$. The character returned indicates the state of tone reception as indicated below:

CHARACTER MEANING

RETURNED

"gn-g Received touchtone characters
g F' H#"

ol Busy signal present

e Connected to distant modem

i Dial tone present

b P Low signal at modem

"N No tones present

"R" Incoming ring signals detected
4 Ringback detected

Sometimes you may want to more directly test for carrier presence at the modem. You can do this by
executing a X=(PEEK(964) and 16). If X is zero, then no carrier is present. Up to 20 received touchtone
characters will be accumulated and buffered by background software, so before looking for touchtone
reception, be sure to flush the buffer by executing GET(AS) in succession,

RUGID's background software will do the work necessary to detect ringing signals. If at least one
ring has been detected in the preceding 10 seconds, then the statement PO%=5:GET AS$ will return a "R"
character indicating that ringing is present. The number of rings detected is counted in location $03CE
(974). If 10 seconds elapse without a ring, the ring counter will be cleared and the ring indication "R" will
no longer be returned on port 5. Note that if RUGID is hooked to a 2 wire dialup channel, and RUGID is
not to answer the phone, then your Basic program must keep the count detector register cleared or else
background software may answer the phone. You can accomplish this by executing the following statement
periodically:

100 POKE 974,0

54

eic.).

COMMAND
CHARACTER

ilﬁui
HB-I
ucn
IlDrl
g
g
Uel
"
AR
)
L P
i
g
T
N

RECEIVED
CHARACTER

R
llpl' i
"B
il
L
L
Ll
npn
nym

B e e

3.8.7 CONTROLLING ONHOOK/OFFHOOK

Normally, when waiting for an incoming phone call, the phone will be "onhook”, i.e., the dialing
relay is open. Before dialing a call, the phone must be "offhook”, i.e., the dialing relay must close. This
triggers the phone system to issue a dial tone. Once the dial tone is present, dialing may begin. To contral
onhook/offhook, set PO%=5 and use PRINT "K" for onhook (idle) and PRINT "L" for offhook (dialing,

3.8.8 PORT 5§ COMMAND/CHARACTER SUMMARY

The following table summarizes the single character command and tone detection assignments
used by port 5 to control the modem port/speech synthesizer interface.

FUNCTION

UART to modem 2-wire (RUGS Bell tones); speech 4-wire
UART to RS8422 (RUGS ALERT tones); speech 4-wire
UART to RS232; speech 4-wire

UART disconnected; speech 4-wire

UART to modem 4-wire(RUGS Bell tones); speech 2-wire
UART to RS422 (RUGS ALERT Tones); speech 2-wire
UART to RS232; speech 2-wire

UART disconnected; speech 2-wire

2-wire phone interface onhook

2-wire phone interface offhook

Send modem answer tone

Modem transmitter on

Modem transmitter off

Transmitter key on

Transmitter key off

MEANING

Touchtone received characters

Busy signal present
Connected to distant modem
Dial tone detected

Low signal level

Mo tones present

Ringing signals detected
Ringback present

3.8.9 MODEM SETUF OVERRIDE

The modem serial port, port #2, setup parameters installed in voted RAM will be used to establish
the baud rate, word length, etc., upon power application, and any time the unit is reset by the watch dog
timer. You can override the setup for the modem port from BASIC by using the MODE command followed

55

by parameters that specify the new baud rate, word length, etc. The correct syntax for the MODE command
is:

MODE=BAUD,PARITY WORDLENGTH.STOPBITS,ANS/ORIGINATE

The options for each parameter are as follows:

PARAMETER OPTIONS

Baud rate 50,75.110,134,150,300,600,1200,2400
3600,4800,7200,9600,19200

Parity E (even), O (odd), N (none), M (mark), S (space)

Word length 56,78 ,

Stop bits 13

Ans/originate A (answer), O (originate), L (low tones)

As an example, the following program segment will set the communications parameters as indicated:
PO%=5:print "MODE=2400,E,8,1,A"

Resulting setup would be: 2400 baud, even parity, 8 bit word, | stop bit, answer mode. These parameters
will take precedence over the previous sefup immediately. If any parameter is detected to be in error, the
setup in place prior to issuance of the MODE statement will remain in place.

3.8.A RUGS PORT 2 R5232 FORT

RUGS units have an optional RS232 port on their COM boards to enable serial communications
with external modems, particularly special purpose modems to enable satellite access. The R5232 port is
accessible from the underside of the unit using a 10 pin shrouded header on a ribbon cable with a DBY
connector on the other end to connect to the external modem. The connector pinout is listed below. The
cable is available from RUGID. Note that pin 1, when asserted true, will wake up the RUGS. This can be
used to wake up the unit and enable communications in applications where the units are generally asleep to
CONSErve power.

Table 3.8.A RUGS Optional RS232 Port Pinout
PIN FUNCTION

DCD Data Carrier Detect

RXD Received Data (incoming)
TXD Trensmitted Data (outgoing)
DTR Data Terminal Ready

GND Ground

NC

RTS Request To Send

CTS Clear To Send

NC

0 GND Ground

— WD Ba =] O e W b

3.9 PRINTER PORT (RUG6 & 8)

The printer port is a standard parallel Centronics compatible type port that is accessed by setting
variable PO% to 3 before executing the PRINT statement. 1t can also be enabled for generating program

56

listings by hitting the "P" key while holding down the CONTROL key. Hitting "Q" while holding down the
CONTROL key will disable the printer for program listing purposes. It does not effect the use of the printer
for BASIC PRINT instructions. The printer port is on the RUGSH protected field board and on the RUGE
low power field board. The pinout is presented below and is identical to that used by IBM PC compatible
computers; so a standard DB25 male to Centronics connector will enable the RUGID to be connected to
standard parallel printers.

Table 3.% PRINTER PORT PINOUT

PIN SIGMAL
| Strobe

2 Data 0

3 Data |

4 Data 2

5 Data 3

& Data 4

7 Data 5

3 Data 6

9 Data 7
10 ACK

11 Busy

12 Paper out
13 NC

14 NC

15 Error

16 NC

17 NC
19-25 GND

3.9.1 PRINTER ERROR DETECTION

Attempting to print to a printer that is disconnected, off line, out of paper, or turned off can cause
your program to stop while background software waits for an acknowledgement from a printer. To
minimize this possibility, RUGID monitors error signals from standard Centronics printers and makes them
available to Basic to test before issuing print statements. The easiest way to sample this register is to use
the routine PREWATCH in the library file PRWATCH.LIB.

PRINTER STATUS BYTE: location $8760=34656

X|X]|X]|X|P |B|E X
E: |3 | &
3 | R
Y
OK gl |1
Cable off]
Cut of paper I | X | X
Busy of off line X160 1X
Out of paper or off line X|X]|0

57

3.10 TIMERS

An array of timers, DT%(), is available for use in general purpose event timing. The number of
timers is set by the dimension statement. Once per second, the system will decrement any DT%() entry that
is not zero. You can program time delays by setting a DT%() variable to the number of seconds you wish to
delay, and then testing for that timer reaching zero. When it reaches zero, the time delay has expired.

There are 64 timers maximum possible, DT%(1) through DT%(64). The dimension statement should be set
for no more timers than necessary in order to avoid having background software process timers
unnecessarily. The timers have a range of 0 through 32767 seconds.

3.11 REALTIME CLOCK/CALENDAR

The internal real time clock/calendar can be set in the monitor mode by hitting the "T" key and
then entering the date and time in the exact format with which they are displayed. It is important to keep
this roughly accurate even if not used to time BASIC data gathering or other functions because it is used to
tag the occurrence of the last BASIC execution error.

Monitor software controls the clock interface, sampling the clock once per second and storing its
outputs in array CK%(1), and transferring CK%(1) to the clock when BASIC writes to CK%(I). Therefore,
when running a BASIC program, you only need to read and write to CK%(I) to interface to the realtime
clock/calendar. The following table defines the assignments of CK%(T):

ARRAY ENTRY MEANING RANGE
CE%{0) Seconds 0-59

CE2%(1) Minutes 0-59

CEK%{(2) Hours 0-23
CK%(3) Day of Mo, 1-31
CK%(4) Month 1-12
CE%(5) Year 0-99
CK%%({6) Day of Wk. 1-7

The clock/calendar accounts for leap year.
3.11.1 SETTING CLOCK/CALENDAR FROM MONITOR

Type "T" (User's entry to invoke time/date display and allow time or date changing.)
RUGID replies:

CURRENT DATE/TIME IS SAT 01/11/86 21:45
SET WITH SAME FORMAT:_

You may now enter a "RETURN" if you do not wish to alter the time/date setting; or you may enter a new
time directly below that shown beginning with the character designated by the underline prompt. Note that

this is a 24 hour clock. All essential information must be entered in the format indicated. The acceptable
mnemonics for the days of the week are: SUN MON TUE WED THU FRI SAT.

3.12 WATCHDOG TIMER

In order to account for transient errors and software errors, a hardware watchdog timer is provided
that if allowed to time out will reset the computer and, therefore, restart whatever software process was

58

executing before the error ccourred. The watchdog timer is retriggered by the interrupt process which is
triggered by the BASIC program. If interrupts fail to generate a trigger, the timer will reset the processor
0.57 seconds later. A counter is maintained by the interrupt process that stretches the retrigger interval for
BASIC to 2.3 seconds. The watchdog timer is retriggered automatically by the monitor when in the monitor
or BASIC command mode. When running a BASIC program, a POKE 530,1 must be executed at least once
every 2.3 seconds to avoid an inadvertent reset. For debugging purposes, the timer may be disabled by
executing a POKE 531,0. Once debugging is complete, however, the timer can be enabled by executing a
POKE 531,1, The watchdog timer is a powerful device for assuring continued operation especially in
unattended installations. Whether enabled by Basic or not, the watchdog will catch most system errors,
including those detected by the Basic interpreter.

3.13 MEMORY WRITE PROTECTION

RAM memory containing the program and other critical data including communications setup
parameters is write protected, which means it cannot be modified if the program is running without taking
action to first open the memory. We recommend against opening the RAM if at all avoidable, as the
program can be corrupted by transients during this time. The procedure for opening and closing memory is
presented below:

To open RAM:

A=PEEK(969) AND 191:POKE 969,A:POKE 34800,A
(Wait 3 seconds, then RAM will be open.)

To close RAM:

A=PEEK(969) OR 64:POKE 969,A:POKE 34800,A
(RAM is closed immediately.)

3.14 MEMORY EXAMINE/MODIFY

In monitor mode, any memory location can be examined by hitting the "M" key and then entering
in hexadecimal the address to be examined. The monitor will display eight bytes beginning with that
address along with their ASCII equivalents if possible. Any location that is not write protected or inherently
unwritable can be altered by then hitting the "/ kev and keying in the new contents for any of the eight
bytes displayed. Extreme caution should be used since the executive software uses some locations to store
flags and data. As many bytes as desired can be entered in sequence, even in excess of the eight displayed.
The RETURN key terminates the alteration process. The space key causes the unit to display the next 8
bytes. Holding the space key down continuously causes the display of an additional 8 bytes approximately
every second,

3.15 SPEECH SYNTHESIZER

The speech synthesizer is controllable only from a BASIC program. The synthesizer is voice
trainable , and in fact must be trained by you before it can perform any useful speech output. Memory on
the speech synthesizer board can hold approximately | minute of speech. With a fully populated RAM bank
board, that capacity can be increased to a total of 4 minutes. Messages are tagged with numbers in the
range of 1 to 999 when recorded. Those tag numbers are used to reference the recorded messages during
playback or deletion. Messages must be deleted before they can be recorded.

You control the speech synthesizer by setting PO%=4, and then sending the commands listed
below using the PRINT statement. Commands can be strung together and will not be executed until a

39

carriage return is sent. Synthesizer status can be read by setting PO%=4 and then executing the GET AS
command. A single ASCIT character at a time will be returned.
The following commands are supported:

COMMAND ACTION

C Cangcel all strings and halt recording/playback.
Dxxx Dielete message xxx. Recover free space.
Paxx Playback message 0.

Rxxx Record message Xxx.

#- o .x Speak the value (minus)xo.x

For this to work, messages 1 through 12 must be:
Msgs 1.9 ="One...Ning"

Message 10 = "Zero"

Message 11 = "Point”

Message 12 = "Minus"

CR Execute preceding string of commands,

The following reply strings are supported:

REPLY MEANING

E# Error encountered:
#1=put of memory.
#2=referenced message already recorded
#3=referenced message not recorded
#d4=no message number given

I Synthesizer idle.
WS Memory remaining=### Kbytes.
W Working on command siring.

The program segment called TRAINSP.LIB, in the software library included with each unit, can
handle all speech training, playback and deletion functions.

3.16 RAM BANK CONTROL

RUGID's RAM bank expansion card can be used to store data in data logging applications, or to
store speech information to extend the amount of speech storage from the 60 seconds available on the
speech board to more than 240 seconds, The board is available with 32K byte static RAM chips installed as
indicated in the following table:

60

CHIPS CAPACITY SPEECH STORED

3 256K 69 sec,
16 512K 138 sec.
20 640K 173 sec.

An onboard lithium battery powers the board during power outages, and will maintain memory contents for
up to 18 months of cumulative power outage. Note that one RAM bank board cannot be split between data
storage and speech storage, and that only one board can be used for each of those applications. Therefore,
two RAM bank boards can be installed in a RUG-6 or RUGS unit, but one must be used for data storage and
the other for speech storage.

When used for speech storage, the RAM bank board will be automatically detected and used by the
speech synthesizer. No special attention is necessary by the programmer.

When used for data storage and retrieval by BASIC, the board appears as a pair of bank select
registers and a 256 byte RAM window that can be PEEKed and POKEd. The BASIC programmer must
confrol the bank selection by POKEing to the CHIP SELECT and PAGE SELECT registers defined below,
and then either write or read the 256 addresses in the resulting RAM window.

An additional capability of the RAM bank board is that it can be write protected, write enabled, or
placed under software control using jumper J2 on the board. When under software control, bit 6 of the chip
select register controls write protection.

CHIP SELECT REGISTER: location=38100 (33024)

The following table defines contents of this register for accessing the various chips installed on the
board. See section 8.2.1 for RAM bank component locations.

REG. CHIP REG. CHIP REG. CHIP
VALUE SELECT VALUE SELECT VALUE SELECT
$70=112U1 $68=104 usg $58=88 ULy

$71=11302 569=105 u1o $59=89 18

5'{2=I 14U3 $6A=106 U1l $5A=90 ule

$73=115U4 $6B=107 2 $5B=91 uz2o

§74=116U35 $6C=108 ui3

§75=117U6 B6D=109 U4

$76=118U7 $6E=110 uls

§77=119U8 $6F=111 uUle

PAGE SELECT REGISTER: location=88110 (33040), range is 0 to 127,

RAM WINDOW: location=3$8000 (32768) to $80FF (33023)

This is the range of addresses in which you actually store the data using POKE 32768+AD XX
where AD is the address (0 through 255) for one byte of your data, and XX is the data (0 through 255). To
read the data back, use PEEK (32768+AD).

3.16.1 STRING STORAGE & RETRIEVAL FROM RAM BANK
Strings can be stored and retrieved to/from the RAM bank using BASIC's string operators and

pokes per character, but that is slow compared to using the built in string transfer subroutines built into the
operating system and deseribed here. Basically, using the built in routines, transfers occur between the

61

reserved string, Z% and the RAM bank at addresses set in the bank select registers by BASIC, Once the
bank selects are setup, BASIC must call an EPROM subroutine using the USR() function to trigger the

transfer.
3.16.2 STORING TO RAM BANK
Use the following procedure to store a string to the RAM bank:
| Transfer the string to Z3.
2 Set the chip select register, e.g., POKE 33024,112,
3 Set the page select register, e.g., POKE 33040,35.
4 Set the byte within the RAM bank's window where you want the first byte of Z5 to be stored:
POKE 1420,64.
5 Setup the USR() function to point to the string storage routine:
POKE 4. 27:POKE 5,235
6 Execute the USR instruction to send the string Z5 to the RAM bank:
X=USR{0)

The string Z$ will now be stored in the above example on chip #1, page 35, beginning at location 64. It will
be stored with a "0" appended to the end to indicate the end of the string.

3.16.3 RETRIEVING A STRING FROM THE RAM BANK
Retrieving a string is almost identical:
1 Set the chip select register, e.g., POKE 33024,112.

2 Set the page select register, e.g., POKE 33040,35.

3 Set the byte within the RAM bank's window from where you want the first byte of Z§ 1o be
retrieved, e.g.,

POKE 1420,64.

4 Setup the USR() function to point to the string retrieval routine:
POKE 4,30:POKE 5,255

5 Execute the USR instruction to read the string from the RAM bank and save it in Z5:
X=USR{D)

6 Transfer the string in Z$ to another string, because, if you change RAM bank register, the
contents of Z$ will then reflect the contents of the new window presented by the RAM bank.

62

317 PLOTTING TO PRINTER

RUGID's operating system has background software to assist in plotting any combination of up to
128 analog and digital data sets to dot matrix printers. A RAM bank board with at least 128K of RAM is
required to hold the samples to be plotted and to store the plot image that RUGID produces and spools out
to the printer. Basically, what's required is that the program:

1) store samples in any of up to 128 designated areas,

2) specify the size of the plot and location on the sheet,

3) specify any grid lines to be plotted,

4) identify which sets of samples are to be plotted,

5) specify the dot pattern to be used for each trace,

) issue the command PO%=3:X=plot(1)

T) monitor location 1390 (peek{1390)) to see when done,

8) perform a backward form feed, and print any text legends.

In order for plotting to work properly, you must have a dot matrix printer connected to RUGID's printer port
that is capable of performing a backward form feed. Otherwise text legends cannot be written to the plot
after the analog data is plotted. The software examples presented below work with Star Micronics'
NX1000, NR10 and NR135 printers.

3.17.1 RAM BANK USE FOR PLOTTING

Before issuing the command to plot, parameters must be stored in the RAM bank to setup the plot
characteristics such as plot size, location, trace pattern, etc. Note that the RAM bank is segmented into 24
chips, 128 pages per chip, and 256 bytes per page. The first two chips (64 K bytes) are reserved for the plot
image and print spooling by RUGID. The first page of the 3rd chip contains setup parameters that you must
install before issuing the plot command. Remaining pages are used to store the data samples to be plotted,
with 6 pages reserved per plot. Therefore, each plot can consist of up to 678 data points with each point
being a two byte number in the range of 0 to 639, The table below specifies locations containing necessary
information to enable RUGID to perform the plot. Before you feel mired in the details of this table, note
that the code segments supplied in the following sections perform most of the table fill in for you.

63

TABLE 3.17.1 RAM BANK USE FOR PLOTTING TO PRINTER

CHP

PAGE

256 BYTE WINDDW

112

113

0-
127

Reserved for plot image and spooler

114

]

Byte 0=Vertical size of plot in bytes (1 to 79)

Byte |=Horizontal size of plot in bytes (1 to 95}

Byte 2=Spare

Byte 3=Spare

Byte 4=Vertical axis location, bytes from upper left corner of sheet (0 to 79)
Byte 5=Horizontal axis location, bytes from upper left comer of sheet (0 to 95)
Byte 6=Spare

Byte 7=Spare

Byte 8=Pattern of plot #1, O=don't plot
255=golid line, 127=dashes, 85=fine dots, etc.

Byte 135=Pattern of plot #128, O=don't plot

Bytes 136-143=locations of solid horizontal grid lines in byte pairs LS, MS
Bytes 144-151=locations of dashed horizontal grid lines in byte pairs, LS, MS
Bytes 152-175=locations of dotted horizontal grid lines in byte pairs, LS, MS

Bytes 176-183=locations of solid vertical grid lines in byte pairs, L5, MS
Bytes 184-191=locations of dashed vertical grid lines in byte pairs, LS, M5
Bytes 192-255=locations of dottd vertical grid lines in byte pairs, LS, MS

114

0,1...254,255=plot #1 samples 0 to 127 LS,M5

0,1...254,255=plot #1 samples 128 to 255 LS,MS
0,1..254,255=plot #1 samples 256 to 383 LS,MS
0,1...254.255=plot #1 samples 384 to 511 LS,MS
0.1...254,255=plot #1 samples 512 to 639 L5,MS
0,1...254,255=plot #1 samples 640 to 767 LS,MS

114

o I Ch WA & W k) —

0,1...254,255=plot #2 samples 0 to 127 LS,MS

0,1...254 255=plot #2 samples 128 to 255 L5,M5
0,1...254,255=plot #2 samples 256 to 383 L5, M5
0,1...254,255=plot #2 samples 384 to 511 L5, M5
0,1...254,255=plot #2 samples 512 to 639 L5,M5
0.1...254_255=plot #2 samples 640 to 767 L5,MS

114

Plot #3 samples...

Additional RAM is used to store samples for up to 128 total plots...

3.17.2 SETTING PLOT SIZE AND LOCATION

The plotting software in EPROM sets the printer for a plot density of 60 dots/inch horizontally, and
72 dots per inch vertically. Each plot can be 80 bytes high (640 dots) by 768 dots wide. Therefore, the
maximum plot size is 8.89 inches high by 12.8 inches wide. This will only fit on 14 inch wide printer paper.
If you're using an 8.5 inch printer, you will be limited to 510 horizontal data points maximum. If you wish
to leave space to the left of your plot for vertical scale information, you must reduce the horizontal size of
your plot correspondingly to keep from running off the right side of the paper. Similarly, if you wish to
leave space at the top or bottom of the plot for legends, you must reduce the vertical size of the plot. The
table below will assist in setting the 4 bytes that establish the size and location of the plot for RUGID's
background software.

TABLE 3.17.2 EXAMPLES SPECIFYING PLOT SIZE AND LOCATION

CHP | PAG BYTE PLOT RESULT

114 0 =79 Full size plot, 8.5 inch paper
1=63
4=79
5=0

0=79 Full size plot, 14 inch paper
1=95
4=T49
5=0

0=79 Full vertical size, 8 bytes reserved to right of plot, 14 inch paper
1=87
4=79
5=7

0=79 Full vertical size, 8 bytes reserved to right of plot, 14 inch paper
1=87
4=79
5=0

0=73 8 bytes reserved to left and below plot, 14 inch paper
1=87
4=T3
§=7

The following code segment installs the four bytes necessary to setup plot size and location for a
full height plot on 14 inch paper with 6 bytes reserved to the left of the plot for legending:

CH=114;PG=0:gosub CHIFPAGE 'Setup chip and page select
AD=0:X=79:gosub RAMIT 'Set vertical size
AD=1:X=89%:gosub RAMIT 'Set horizontal size
AD=4:X=T9:gosub RAMIT 'Set axis 80 bytes down
AD=5X=6:gosub RAMIT 'Set axis 6 bytes from left
CHIPPAGE poke 33024, CH:poke 33040,PG:return 'Chip & page select
RAMIT poke 32768+AD Xireturn "Write a byte

65

3.17.3 ENABLING GRID LINES AND AXES

RUGID can be made to plot horizontal and vertical axes and grid lines in solid, dashed and dotted
form by writing the locations of the lines in the proper locations in chip 114, page 0 as indicated in table
3.17.1 above. Each grid mark location is specified by writing a byte pair (LS,MS) that contains the dot
location of the line in relation to the origin (0,0) at the plot's lower left corner. Any byte pair that contains
(255,255) will not be plotted, Note from Table 3.17.1 that the following numbers of grid lines are

supported:
TYPE HORIZONTAL
Solid 4
Dashed 4
Dotted 12

VERTICAL

4
4
3z

As an example, the following code segment installs grid lines as indicated in the comments:

gosub CLRGRID
AD=136:X=0:gosub RAM2
AD=176:X=0:gosub RAM2
AD=144:X=SP(5):gosub RAM2
AD=146:X=SP(4):gosub RAM2
AD=152:X=600:gosub RAM2
AD=154:X=400:gosub RAM2
AD=192:X=230:gosub RAM2
AD=194:X=460:gosub RAM2
AD=196:X=690:gosub RAM2

RAM2 XX=int(X/256):X=X-256* XX
poke 32768+AD, X poke 32769+AD XX
return

CLRGRID CH=114:PG=0:gosub CHIPPAGE
X=255
for AD=136 to 255:gosub RAMIT:next
return

'Clear grid definitions
"Solid hor. axis at zero
'Solid vert. axis at zero
‘Dashed hor. line at SP(5)
'Dashed hor. line at SP(4)
'Dotted hor. line at 600
"Dotted hor. line at 400
"Dotted vert.line at 230
"Dotted vert.line at 460
'Dotted vert.line at 690

'Split X into 2 bytes
'Store 2 bytes to RAM bank

'Setup chip & page selects
"Walue to turn off grid line
"Write X to grid area

3.17.4 ENABLING PLOTS AND SETTING PATTERNS

One byte per plot is used in chip 114, page 0 to tell RUGID which of 128 possible stored plots are
to be sent to the printer, and what dot pattern is to be used. As shown in Table 3.17.1, locations 8 through
135 are used for this purpose. Plot #1 is enabled by writing to location 8; plot 2 is enabled by writing to
location 9, etc. Writing a nonzero value turns on the plot, with the value specifying the dot pattern. For
example, a value of 255 specifies a solid line (all dots on); a value of 127 gives a dashed line (7 bits on, 1 bit
off); a value of 85 would turn on every other dot, and a value of zero would turn off that plot. Note that the
actual data samples do not have to be moved to use them in plots; simply enabling the plotting by writing to
this 128 byte area enables you to mix plots on the paper. For example, the following code segment enables
plots 1,2, and 3 as solid lines, and plots 20 and 21 as dashed lines:

66

CH=114:PG=0:gosub CHIPPAGE
gosub CLRPATTRN
AD=8:X=255:gosub RAMIT
AD=9:X=255:gosub RAMIT
AD=10:X=255:gosub RAMIT
AD=27:X=127:gosub RAMIT
AD=28:X=127:gosub RAMIT

CLRPATTRN CH=114:PG=0:gosub CHIPPAGE
X=0
for AD=8 to 135;gosub RAMIT:next
returmn

3.17.5 STORING DATA FOR PLOTTING

'Setup chip and page selects
'Clear pattern specifiers
"Plot 1 solid line

"Plot 2 solid line

"Plot 3 solid line

'Plot 20 dashed line

'"Plot 21 dashed line

'Setup chip & page selects
"Value to turn off pattern
"Write value to pattern area

Data samples to be plotted must be scaled to fit on the plot and then stored into the proper one of
128 plot areas. Each plot area consists of 6 contiguous pages of 256 bytes each, with each data sample
consisting of two bytes in LS,MS order. When plotting commences, the left-most data point to be plotted
will use the value stored in the first byte pair of the 6 page area being plotted. The values that can be plotted
on a full height (80 byte) plot can span the range of 0 through 639. If your plot height is less than 80 bytes,
the maximum value is less as specified in the following relationship:

Max value=8%(vert bytes)-1

The following example stores a sin wave in plot area number 2. The sin is scaled to occupy the center half

of a full vertical size plot.

SINPLOT I=2
[X%(T=0
for I1=1 to 750
X=320+160*sin{11/20}
gosub STOREXI
next
retum

STOREXI PG=6*1-5: X X=int(IX%{I}/128)
PG=PG+XX
AD=2%(IX%(I)-128*XX)
XX=int{PG/128)

CH=114+XX:PG=PG-XX:gosub CHIPPAGE

gosub RAM2
IX%(D=TX%({T)+1

if IX%{T=>767 then IX%{I)=0
return

"Designate which plot
"Zero sample index

"Save 750 points

'‘Compute a sample & scale
"Store the sample X in plot |

'Begin page calculation
'Address in page

"Setup chip & page addresses
"Store sample to RAM bank
Increment sample index
‘Limit sample index range

3.17.6 COMMANDING PLOT OUTPUT TO PRINTER

After setting up the plot specification area on the RAM bank and storing the plot data samples, as
described in the paragraphs above, you cause the plot generation to commence by executing the following
statement:

PO%=3:X=plot(1) 'Start plotting

The PO%=3 tells the plotting EPROM software to plot to the printer as opposed to the LCD (PO%e=0); X
can be any variable; and the argument of plot() is just a place holder. Upon executing the above statement,
the processor will clear chips 112 and 113 on the RAM bank, read the plot setup information, and plot your
designated data to chips 112 and 113, It will then send the first 70 bytes of the plot out to the printer
transmit buffer and return to your basic program. As your basic program continues to run, after each
program line the printer buffer will be examined and, if empty, another 70 bytes will be sent out until the
plot data has all been transmitted to the printer. Your program can monitor the plot's completion status by
executing:

K=peek(1390)

The values returned indicate the following:

XxX=0 Idle
X=1 Busy with plot
X=2 Error in plot setup

After the plot is finished (peek(1390)=0), you may issue a reverse form feed to send the printer back to the
top of the form you just plotted.

print chr$(27);chr$(12); 'Reverse form feed
Then print all titles, legends, and any other text you wish on the plet. The following program segment

will accurately print legends on the left scale. It does this by changing the printer's form feed to one dot and
then stepping down one dot at a time and printing legends at the proper lines with one dot resolution.

LEFTSCALE gosub VERT1DOT 'Setup for 1 dot form feed
print:print:print "Down 3 dots for alignment
for AD=632 to 0 step -1
print
if AD=600 then print " 15 ft." "Print '15 fi. at dot 600
if AD=int(SP(5)) then print " High alarm=";SP(5);"f."
if AD=0 then print " 0 fi." '0 feet at origin
next
gosub VERT16 'Back to 6 LPI spacing
retum

VERTIDOT print chr8(27);"A";chr$(1); 'Setup 1 dot form feed
refum

VERT16 print chr$(27);"2";:return 'Setup 6 LPI form feed

68

SECTION 4

4.0 BASIC INTERPRETER

"It is practically impossible to teach good programming to students that have had a prior
exposure to BASIC: As potential programmers, they are mentally mutilated beyond the
hope of regeneration.”

Edsger Dijkstra, 1975

All RUGID units contain our BASIC interpreter in EPROM. We've been asked why we chose
BASIC instead of C, PASCAL, FORTH or any of several other languapes. Since our charter is to provide
low cost units that are easy to configure for field use, we chose BASIC because it's a language that is easy
to learn, easy to apply, supports field modification, enables support at reasonable cost by a large body of
programmers, and has low RAM occupancy. More than 80% of all code written is in BASIC, indicating
that there are many programmers who know some dialect of the language.

Since our BASIC interpreter is supplied in EPROM it does not need to be loaded from an external
source in order to run. Only the application program, which contains the instructions that our BASIC
interpreter "intreprets”, needs to be loaded to put the unit to work. Our BASIC interpreter conforms with
standard BK extended BASIC in all respects except that a PLOT extension has been added to make plotting
to the LCD and printer convenient; and certain variables and arrays have been assigned to specific /0
functions so that background software in EPROM can perform scanning.

Short software examples are given throughout this manual to illustrate specific /O access and
statement syntax. However, this manual is not a sufficient tutorial for an inexperienced programmer.
Therefore, we recommend that if you are not familiar with BASIC programming, you obtain one of the
excellent tutorials on the BASIC language.

4.1 DIRECT AND INDIRECT COMMANDS

The BASIC interpreter supports both direct and indirect commands. Direct commands are executed
by keying in a valid statement without a preceding line number. Statements such as

PRINT A.B.C
D3=17.5

are direct commands. The computer will execute the direct command immediately without effecting the
stored program. If a program had been running and had stored values in memory, the stored values would
be available to the direct commands. The main utility of direct command execution is to test execution of
particular statements and to allow examination of stored values. After executing a direct command the
RUGID will prompt you with:

Free PGM=12456 Free DATA=4567
oK

69

This indicates that there are 12456 bytes of unused program space left in memory, and 4567 bytes of unused
data space left. The "OK" indicates the RUGID is ready to accept your next command,
Indirect commands consist of valid statements preceded with line numbers. Statements like

155 D3=17.5
250 PRINT A,B,C

are indirect commands. Indirect commands are stored for later execution rather than executed immediately,
They, therefore, become the program that is executed whenever you type RUN. They are stored and
executed in the numbered order indicated by the line numbers. If you enter a statement with a line number
the same as one already in memory, the new statement will replace the one in memory. You should not do
that because BASIC will clear all variables in that instance.

4.2 STATEMENTS

A statement consists of one or more commands ending with the RETURN or ENTER keystroke.
The BASIC interpreter will begin execution with the first command on a line and will execute all the
commands in a statement unless a command in the statement causes the interpreter to jump to another
statement. If more than one command is to be executed on one statement, the commands must be separated
with a colon. The following is a statement with three commands:

START X=LY=X+5.Z=X*Y

4.3 ENTERING AND EDITING PROGRAMS

There are two ways to enter and edit programs for RUGID. The first is to enter statements directly
using a terminal, or using a computer that emulates a terminal. This direct manual entry method is OK for
very small test programs. The second is to enter and edit the program on any computer with a word
processor and serial port, and then download the program serially to RUGID. You will find the latter
method more convenient for production programming.

4.3.1 ENTERING A PROGRAM USING A TERMINAL

Any ASCII terminal will work. See section 2.2 and 2.3 on connecting terminals and computers to
RUGID's serial port. You must get RUGID to the command mode to begin editing programs. To do that,
type "CTRL K" three times in succession. RUGID will go to the monitor mode and display the weleome
prompt. Now type "C" to enter the command mode. In this mode you can edit the program and execute
direct commands.

4.3.2 ENTERING A PROGRAM USING A COMPUTER

The second method of entering programs is to first enter the program into a computer using a word
processor and then download the program to RUGID serially. See section 2.3 on connecting a computer to
RUGID's serial port.

If vour word processor has a nondocument mode, you should use that mode to edit your program,
as that mode will not use imbedded non- ASCI codes. You have two choices regarding the format of the
program vou enter. You may enter it in a fairly strict BASIC line numbered syntax that will download
directly to RUGID; or you may enter your program in a non-line numbered freeform format, and then run it
through the supplied CONVERT.EXE program that converts it to the line numbered syntax. We use the
latter method for all BASIC source programs as it relieves our programmers from the inconvenience of
dealing with line numbers, and it enables the source code to be self documenting. All the example programs
in this document use the non-line numbered form.

70

4.3.3 CONVERT.EXE

CONVERT.EXE is an executable utility for converting free form BASIC source code to line
numbered format required by RUGID BASIC. The program runs on IBM PC compatibles with
MSDOS/PCDOS 2.1 and later. It enables you to write your application source code in a more or less free
form format with imbedded comments, mixed upper and lower case characters, blank lines, imbedded
blanks and tabs, and, perhaps most importantly, without line numbers. CONVERT.EXE will read your
source file and produce a compressed file with comments, blanks and tabs stripped out, and with line
numbers inserted so that the syntax is acceptable to RUGID. The file produced by CONVERT will have the
same name as your source file but with the .CMP extension. In order to eliminate line numbers in your
source code you must use labels for each line to which you wish to GOTO or GOSUB. Adhere to the
following rules and you should have no problems:

. Variable names, instructions, and labels may be upper or lower case.

. Blank lines are ignored.

. A single quote mark signifies the start of a comment which is assumed to continue to the end of the line.

. Strings inside double quote marks are left uncompressed,

. Labels must be less than 10 characters long

. Missing labels will be flagged as errors.

. Duplicate labels are not flagged.

. REM's are left in the program. So use REM if you wish the remark to stay in the program; or use a single
quote if you wish the remark deleted in the version to be loaded to RUGID.

00 =] on o La s L B e

To invoke CONVERT to convert the source program DEMO.SRC to the compressed version
DEMO.CMP, simply type in CONVERT DEMO.SRC. The resulting file DEMO.CMP will be compatible
with RUGID BASIC syntax. The following example illustrates the source and final code segments
produced by CONVERT. The code segment is a useful utility that reads the real time clock and produces a
consistent time and date string in the variable J$ useful for time tagging alarm messages on the display or

printout,

SOURCE CODE SEGMENT: File RTC.SRC

T ""Setup RTC S-H‘l!'lg iﬂ js:!..tl!tt!t
rem Notice that this rem stays in program

RTC [=CK%i{6)
if I<1 or I=7 then J§=" "goto SKIPDAY
1=3*%(CK%({6)-1)+1:C0=CK%(1)

JE=mid$("SUNMONTUEWEDTHUFRISAT" 1 3+" " "Day of week
SKIPDAY I=4;gosub TIMEX :J$=J§+"/" 'Month
1=3:gosub TIMEX :J$=J8+"/" 'Day of month
I=5:gosub TIMEX :J$=15+" " "Year
I=2:gosub TIMEX :15=J$+chr${58) "Hours:
I=1:gosub TIMEX :J$=J$+" ":retumn "Minutes

TIMEX A$=str$(CK%(1)) 'read clock & format to 2 chars.
IF len(A$)<3 then J$=J$+"0"+right$(AS, 1):return
J$=JS+rightS(AS,2):return

RESULTING CONVERTED VERSION: File RTC.CMP

|REMNOTICETHATTHISREMstays in program

1

2I=CK%(6)

3[FI<1ORI=TTHENIS=" ":GOTO6
41=3*(CK%(6)-1)+1:C0=CK%(1)
515=MIDS("SUNMONTUEWEDTHUFRISAT" I3 +" "
6l=4:GOSUB110:15=J5+""

T1=3:GOSUB 1 10:15=15+""

81=5:GOSUB110:18=18+" "
91=2:GOSUB110:1$=I$+CHRS(58)
101=1:GOSUB110:15=1%+" ":RETURN

1 1AS=STRS(CK%(1))
[2IFLEN(AS)<3THENIS=]$+"0"+RIGHTS$(A%,1):RETURN
13]8=]5+RIGHTS{AS,2):RETURN

4.4 SPECIAL CHARACTERS

CHAR

The following characters have special meaning to BASIC:

MEANING

%o

Erases current line being typed. This is useful for deleting a line being entered that is known to
contain an error since BASIC does not support line editing.

The colon is used to separate statements on the same line, There may be as many statements as
desired on one line. Putting as many statements as possible on one line is recommended because it
reduces storage requirements and statement searching time, A GOTO or GOSUB can only
reference the beginning of a line because remaining statements on the line cannot have line
numbers,

The question mark is used as a shorthand for PRINT, and may be used anywhere a PRINT
instruction would otherwise be used. When a program is listed that used ? in place of PRINT, the
word PRINT will be listed at each occurrence where 7 was used in place of PRINT.

A dollar sign appended to a variable name establishes that the name is a character string. Also note
that all instructions that end with a "$" are string instructions that produce string results,

A percent character appended to a variable name establishes that the variable is an integer with a
range of -32768 to 32767.

Comma is used as a separator in PRINT and other statements. Ina PRINT statement, it will cause
the printing of values to occur on 14 character tabs,

Semicolon is also used as a separator in print statements and should be used for adjacent printing of
values.

Equal symbol assigns the value to the right of the equal to the variable on the left of the equal.
Plus sign acts as the addition operator,

Minus sign reverses the arithmetic sign of the expression or variable that follows. It also acts as
the subtraction operator.

The asterisk is the multiplication operator.

The slash is the division operator.

The caret is used to command exponentiation to integer powers,

The left parenthesis begins the grouping of an expression that is to be evaluated and then is to be
treated as a term in an expression.

) The right parenthesis terminates the expression that was started with a "(" above. A "(" must
always have a matching ")".
s Holding the CONTROL key down and hitting the K key three times will stop a running program
and return control to the monitor.
T Holding the CONTROL key down and hitting the T key three times will stop a running program
and retumn control to BASIC command mode.
4.5 RESERVED KEYWORDS
The following words are reserved by BASIC as instructions so cannot be used in variable names:
ABS FOR NEXT SAVE
AND FRE NOT SGN
ASC GET NULL SIN
ATN GOSUB OMN SPC
CHRS GOTO OR SOR
CLEAR IF PEEK STEP
CONT INPUT POKE STOP
COs INT PRINT STRE
DATA LEFTS POS TAB
DEF LEN READ TAN
DIM LET REM THEN
END LIST RESTORE TO
EXP LOAD RETURN USR
FETCH LOG RIGHTS VAL
FILE MID% RND WAIT
FN NEW RUN
4.6 VARIABLE NAMES

A variable name can be any alphabetic character (letters A to Z) followed by any number of

alphanumeric characters (letters A to Z and numbers 0 to 9). Any alphanumeric characters after the first
two will be ignored, so , for example, the variable names ABC and ABZ would be interpreted as the same
variable. Such ambiguity will not result if you use one or two character variable names, and the program
will run faster and take less RAM to store as well. Note that the variable with a single alphabetic character
such as X or Y will be regarded as the same as X0 or Y0 respectively.

Variable names must use appended characters to differentiate floating point, integer, and string

variables and arrays. The following table identifies the different ways of interpreting the variable Al and
the amount of storage required for each.

73

NAME TYPE # BYTES RANGE

Al Floating Point) +-1.7E38 1o 1.TE-39

Al% Integer 3 -32768 to +32767

AlS String T+string 0 to 255 characters

AL(T) Floating array T+5*] +/-1.7E38 to 1.7E-39

Al%(I) Integer array TH22] -32768 to +32767

ALS(I) String array 7+3*I+strings 0 to 255 characters
4.7 ARRAYS

Arrays are variables that can reference several values in memory using a parenthesized subscript
that follows the variable name to identify the particular element in the array that is to be stored or retrieved
from memory. Array variables are also called subscripted variables because the variable name is always
followed by the subscript. All arrays must be dimensioned using the DIM statement to specify how many
elements the array is to have. For example, the statement DIM A(45),B%(14,4) will cause the BASIC
interpreter to allocate space for 46 fleating point numbers for the array A(), and 75 integer numbers for the
array B%(). (Remember that A(0) is also valid.) The following are valid array specifications:

AD) Floating

A(LS) Floating, 2-dimensional
AX(LLEK) Floating, 3-dimensional
AX%(LD Integer, 2-dimensional
AXSE(5.1) String, 2-dimensional

The variable name can be any valid variable name as identified above, but must not duplicate another
variable name. The subseript within the parentheses may have up to 255 dimensions separated by commas,
Each dimension may be a positive integer value of D to 32765 in the form of a number, a variable, or an
expression. As many as 255 dimensions may be used, but in practicality, more than 3 are seldom used,
Array variables encountered by BASIC when running a program that have not previously been dimensioned
by a DIM statement will automatically be dimensioned by the interpreter upon first reference to the
variable name to an array with 11 elements. Good programming practice requires that the programmer
explicitly dimension each array in order to definitely establish the array size for future reference, and to
avoid wasting memory in the form of unused array space.

Note that integer arrays make the most efficient use of memory of any number storage technique.
If, for example, you want to store 100 numbers (say, 100 A/D converter samples), the following amounts of
storage would be required:

Variable Storage Required

AALAZ 700 bytes
BA..BZ
CA.CZ
DA..DZ

AA%Y. AZY 700 bytes
BA%.BZ%
CA%..CZ%
DA%..DZ%

AA(99) 507 bytes

74

AAY(99) 207 bytes

Therefore, when possible store numbers as integer numbers in integer arrays.

4.8 PROTECTED AND UNPROTECTED MEMORY USAGE

RUGID computers segment memory into protected and unprotecied areas. When the BASIC
system is in the command mode, i.e., when the program is being altered by the programmer, the protected
memory is open and the program is stored there. When execution commences, as a result of keying in RUN
or upon power application, the protected area will be closed so that inadvertent alteration to the program
cannot occur. See section 6.B for the procedure for opening and closing memory. Consult the memory map
in section 9.4 regarding areas of memory reserved and available for storage.

Reading data stored in the protected area by PEEKing into the area can be done at any time
regardless of write protection.

4.9 PREASSIGNED VARIABLE NAMES

In order to simplify the programmer's job of interfacing to the A/D converters, relays, etc.,
software is provided to accomplish scanning and multiplexing of the I/O ports. The programmer need not
access the ports directly, but only needs to store or retrieve data from integer variables having the names
listed below in order to use the interrupt driven 1/O scanning functions provided.

Variable Name Function Max # Elements
Arrays:

Al%(T) Analog inputs 75

AO%I(I) Analog outputs 32

AR%(LT) Data received from a remote unit Depends on RAM
AT%(LD Data to be sent to a remote unit Depends on RAM
CE%(1) Clock/calendar 7

Dva(l) Digital inputs 144

DO%(1) Digital outputs 144

DT Digital timers 64

DU%a(I) Pulse duration outputs 48

DX%{1) Digital input pulse counters 48

FWou(l) Store & forward address path 16

PD2%%(1} Pulse duration input analog values 8

P1%(I) Data to be plotted to the LCD 256

P2%(T) Data to be plotted to the LCD 256

P3%(I) Data to be plotted to the LCD 256

MNonarrays:

CC% Cursor Column (LCD)

CR% Cursor Row (LCD)

PO% Port Identifier

AAS String to pass to remote using CRC com.

Z% String to be stored or retrieved from the RAM bank

75

When using the array variables above, it is important to dimension the arrays only to the extent
necessary to support the application, since the executive will sample the /O ports up to the number
identified in the array definition. Therefore, in the case of analog inputs, if only 3 analog inputs are required
for the application but 8 are dimensioned (DIM AI%(8)), all & will be sampled resulting in a sample rate
only 3/8ths that possible if a dimension of AI%(3) were used. Note also that the zeroth element in each
array is usually unused (i.e., AO%(0), DI%(0)...). Therefore, the 16 digital inputs on the main board can be
accessed using DI%(1)...D1%(8), and DI%(0) can be used by the programmer for other purposes.

4.A CONTROLLING THE WATCHDOG TIMER

All RUGID units are equipped with a hardware watchdog timer that, if allowed to time out, will
reset the computer. Upon initialization of the user's BASIC program, background software commences to
reset the watchdog 56 times per second as long as background software (1/O scanning, communications,
etc.) continues to run normally. If background software fails to cycle, the watchdog will restart the
program. In this mode, no attention to the watchdog is necessary by the BASIC program. This is generally
sufficient watchdog safety for most applications. The watchdog can assume a BASIC watchdog function by
executing a POKE 531,1. In this mode, the watchdog timer will reset the unit unless it is retriggered at least
once every 2.3 seconds by BASIC executing a POKE 530,1. This statement should be included in the main
application program loop and anywhere else a time consuming process might take linger than 2.3 seconds.
Executing a POKE 531,0 will cause the interrupt process to constantly retrigger the watchdog timer
independently of the BASIC program, thus effectively disabling the watchdog timer. In the monitor mode
or command mode, the watchdog timer will be retriggered frequently by the monitor and executive software
since in those modes it is assumed that the unit is not running an unattended application.

4.B LISTING THE PROGRAM

The LIST command allows you to examine a program, and to optionally print it out on the parallel
printer port. The following uses of the LIST command give the indicated results:

Usage Result

LIST Lists the entire program

LIST 45 Lists line 45

LIST 14-110 Lists lines 14 through 110

LIST -250 Lists from the current line through line 250
LIST 45- Lists from line 45 through end of program

Hitting *P before invoking the LIST function will cause the listing to be directed to the parallel printer port
as well as the display. Hitting ~Q will turn off the print feature, A listing may be interrupted by hitting “T
three times. When using the LIST command, the RUGID computer will present 22 lines on the display and
will then wait for a [SPACE] keystroke before presenting another set of lines.

4.C BASIC FAULT TRAPPING

Hitting the "F" key in the monitor mode will cause the RUGID to display the last BASIC error
message and when it occurred. The time and date of occurrence will also be shown. This capability is
provided to enable you to detect errors that occur infrequently in unattended applications. The occurrence
of a BASIC execution error will stop BASIC execution for 2 seconds in order that the error can be
displayed. The program will then resume running from the beginning with the variable set and variable

76

contents that were present at the time the error occurred. If this is not desired, a CLEAR instruction should
be executed at the start of the program to erase all old data values,

4.D PROGRAM EXECUTION CONTROL

BASIC interprets program execution control commands as follows;

RUN Causes the program to mun from the beginning.

END Stops the program and returns to the command mode. Asubsequent CONT direct command will
resume execution at the statement following an END command in the program. As many END
statements as desired may be inserted in the program.

STOF Same as END above, but will print BEEAK IN XXX when the STOP is executed, where XXX is
the line number of the statement with the STOP command.

CONT Resumes execution with the statement following a STOP or END command.

4.E ARITHMETIC
4.E.1 OPERATORS

The following operators can be used as indicated:

Symbaol Use

+ Addition, string concatenation
- Subtraction, negation

! Multiplication

f Division

- Assigns a value to a variable

4.E.2 RULES FOR EVALUATING EXPRESSIONS

The above operators can be used to perform mathematical computations and will be executed in
the order of precedence beginning with operations of highest precedence and working down to operations of
lowest precedence, as listed below. This means that divisions and multiplications will be performed before
additions and subtractions. For example, 17 + 21 /7 equals 20, not 5.43... When the interpreter encounters
operations of equal precedence, the left most is executed first. Therefore, 5-7 + 8 is 6, not -10. You can
always explicitly use parentheses to alter the order of execution. For example, (17 + 21}/ 7 equals 5.43...
The following list begins with operations of highest precedence and ends with those of lowest precedence.
Operations on the same line have equal precedence.

77

1} () Expressions in parentheses are evaluated first.

2) Negation -Z, where Z can be an expression
3) * and / Multiplication and division

4} + and - Addition and subtraction
5) Relational

All below have equal precedence:

= Equal

<> Not equal

< Less than

= (Greater than

=< gr <= Less than or equal to

=2 pr >= Greater than or equal to
Logical operators:
6) NOT Logical and bitwise NOT, as in negation
7) AND Logical and bitwise AND
8) OR Logical and bitwise OR
Note that a relational expression can be used as part of any expression. Relational expressions will result in
a result of True (-1) or False (0). Therefore, (7=5)=0, (18 =18)=1, (45 <55} =0,(45 > 55) = -1.
4.E.3 ASSIGNING YALUES TO VARIABLES

The following commands assign values to variables. The DIM command, not discussed here
initializes all array values to zero for numeric arrays, and to nulls for string arrays. If an array already exists
when a DIM is executed, then the DIM does not zero the array.
LET Use: [LET] variable = expression

Example: LETX=A+234, orX=A+234

The value of the expression is assigned to the variable. The LET is optional and is generally
omitted,

READ Use: READ variable,[variable]....
Example: 150 READ A,B,.C%
Values will be read into the variables listed in the READ expression in the order that they are listed
from the first DATA statement in the program and continuing with subsequent DATA statements
until all variables in the READ statement have been read. If an attempt is made to read more data
than there are DATA statements to supply, an out of data error will occur.

DATA Use: DATA item,[item],...

73

PEEK

ABS

cos

o A S i e S

Example: 125 DATA 14.2,3.6,8

The DATA statement supplies data to READ statements in order to implement table lookups. See
the READ statement above. Strings can be read from DATA statements, however, if you want to
read strings with colons, commas, or leading blanks, you must enclose the string(s) in double
quotes.

RESTORE Use: RESTORE

Example: 250 RESTORE

The RESTORE command resets the DATA statement pointer back to the first DATA statement in
the program. The next READ statement executed following a RESTORE command will obtain its
data from the first DATA statement in the program.

Use: PEEK (location)

Example: 159 CC = PEEK (J)

PEEK allows you to directly read the RUGID computer’s memory locations. The parenthesized
address must be in the range of 0 to 65535.

Use: POKE location, byte

Example: 123 POKE LL

POKE is used to write directly to locations in the RUGID computer's memory. The specified byte
(L) is written into the address specified by J. The byte value must be in the range of 0 to 255; and

the address must be in the range of 0 to 65535, CAUTION: Confine POKE operations to memory
areas not reserved for the RUGID operating system or erroneous program operation may occur,

CLEAR Use: CLEAR

Example: CLEAR

CLEAR sets all arithmetic variables to 0, and all string variables to nulls, All GOSUB and FOR
pointers and nesting are reset, and the data statement pointer is set to point to the first data
statement in the program.

4.E.4 ARITHMETIC FUNCTIONS

Use: ABS (expression)
Example: 450 X1 = ABS{X)

ABS computes the value of the expression in parentheses and returns the absolute value.

Use: COS (expression)

Example: 450 X1 = COS(X)

79

COS returns the cosine of expression X, which must be in radians. If X is in degrees, then use
COS(X/57.2958).

DEF FNx Use: DEF FNvariable name (variable) = expression

FNx

EXP

INT

LOG

RND

Example: 220 DEF FNH(X)=X * 180/ 3.15927

DEF FNx is used to define a function of the parenthesized variable so that it need not be repeated
frequently. Instead, once the function is defined, it may be invoked simply by including the
function FNx in an expression where the larger function would otherwise be used. In the above
example, the "H" is used to differentiate this function from others that we may define such as FNQ,

for example. The "X" represents a variable that may be passed when the function is called. The
result is, therefore, a function of X in this case.

Use: FMvariable name (variable)

Example: X1 = FNH(X)

The function call FNx allows a user defined function to be called within an expression. This is
much more convenient than using a GOSUB subroutine call. The preceding two examples would
convert the value of X in radians to X1 in degrees.

Use: EXP (expression)

Example: 340 X1 = EXP(X+5)

EXP implements exponentiation, i.e., the constant "e" (2.71828) is raised to the power contained in
the parentheses. The parenthesized expression must not exceed 88.0296.

Use: INT (expression)

Example: 235 X1 = INT(3.9)

INT returns the largest integer less than or equal to the parenthesized expression. In the example
above, the result would be 3.

Use: LOG (expression)

Example: 240 X1 = LOG(X * 3.2)

LOG returns the natural (i.e., base &) logarithm of the parenthesized expression. In order to obtain
the base Y logarithm of X use the formula LOG(X)/LOG(Y). For example, to obtain the common
(i.e., base 10) logarithm of 1 use LOG(TIVLOG(10).

Use; RND (parameter)

Example: 400 X1 = (C-DY*RND({X)+D

SIN

SQR

TAN

RND returns a random number between 0 and 1. The parameter in parentheses determines the
generation of random numbers. If the parameter is less than 0, a new sequence of random numbers
is begun using the parameter as a seed. If the parameter = 0, the function will return the last
random number generated. If the parameter is greater than 0, a new random number between 0
and | will be returned based upon the original seed. The example above will return a random
number in the range of C to D as long as X is positive.

Use: SGN (expression)

Example: 270 X1 = SGN{X)

The SGN function returns the sign of the parenthesized expression, or zero if the expression is
equal to zero.

Use: SIN (expression)

Example: 450 X1 = SIN({X)

SIN returns the sine of the expression and assumes that the expression is in radians. Note that if X
is in degrees, vou should use SIN(X/57.2958),

Use: SOR (expression)

Example: 560 X1 = SQR(X)

SQR returns the square root of the parenthesized expression. Be sure that the expression is positive
ot an error will result.

Use; TAN (expression)

Example: 238 X1 = TAN(X)

TAN returns the tangent of the parenthesized expression assuming the expression is in radians.
Note that if X is in degrees, you should use TAN(X/57.2958).

4.E.5 DERIVED FUNCTIONS

The following functions may be implemented using the intrinsic BASIC functions and using the

formulas shown below (P2 = Pi/2 = 1.5708):

SEC(X) = 1/ COS(X)

CSCX) = 1/ SIN(X)

COT(X) =1/ TAN(X)

ARCSIN(X) = ATN(X / SQR(1-X*X))

ARCCOS(X) = -ATN(X / SQR(1-X*X)) + P2
ARCSEC(X) = ATN(SQR(X*X-1)) + P2*(SGN(X)-1)
ARCCSC(X) = ATN(1 / SQR(X*X-1)) + P2*(SGN(X)-1)
ARCCOT(X) = -ATN(X) + P2

SINH(X) = (EXP(X) - EXP(-X)) / 2

COSH(X) = (EXP(X) + EXP(-X)) / 2
TANH(X) = 1 - EXP(-X) / COSH(X)
SECH(X) = 1 / COSH(X)
CSCH(X) = 1 / SINH(X)
COTH(X) = 1 + EXP(-X) / SINH(X)

4.F LOGICAL FUNCTIONS

AND

OR

NOT

Use: AND logical expression...
Also: expression AND expression

Example: 340 IF A<B AND C=D GOTO 120
Also: 350 X1=A AND B

The AND operator is used in IF statements, as illustrated in the first example above, to require that
two or more logical tests be true before proceeding with the action specified at the end of the IF
statement. In the second example, variables A and B are converted to 16 bit signed two's
complement integers and then bitwise ANDed to form a result. Variables A and B must be in the
range of -32768 to +32767 or an error will result.

Use:OR logical expression...
Also: expression OR expression

Example: 230 [F A>B OR C=D GOTO 340
Also: 240 X1 =X OR 45

The OR operator is used, as in the first example, in IF statements to require that any one of two or
more logical expressions be true before execution of the action part at the end of the IF statement
will take place. It is also used, as in the second example, to compute the bitwise logical OR of two
expressions, The two expressions are first converted to 16 bit integers, as in AND above.

Use: NOT logical expression
Also: NOT expression

Example: 248 IF NOT W2 THEN 250
Also: 260 X1 =NOT X

NOT is used in logical expressions to invert the true/false sense of a result, as in the first example
above. It is also used to bitwise logically invert a 16 bit integer as in the second example.

4.G BRANCHING AND LOOPS

FOR.NEXT Use:

FOR variable=expression TO expression [STEP expression]

NEXT [variable]

Example: 230 FOR I =1 TO 7 STEP 2

o R T e G I

13[!{} NEXT I

The FOR.NEXT statement is used to implement a loop that is executed repetitively. On each
repetition through the loop, the statements between the FOR and NEXT parts are executed. The
loop begins with the variable initialized to the value computed in the first expression (1 in the
example). When the NEXT is encountered, the variable is incremented by the value of the
expression following the STEP part (2 in this example), and compared with the value of the
expression following the TO part (7 in the example). If the variable is less than the final value (7),
then the loop will be executed again; but if it exceeds the final value, execution will proceed with
the first statement following the NEXT statement. Every FOR must have a NEXT. Also, you
should never jump out of a FOR NEXT loop. If a loop needs to be terminated before its index
value reaches its end value, then the index value should be set to a high value and the loop be
allowed to terminate normally. Otherwise, a stack overflow could result,

GOSUB Use: GOSUB line number
Example: 460 GOSUB 500
GOSUB causes the interpreter to branch to the specified line number, which is the beginning of a
subroutine. Execution proceeds beginning with that line number until a RETURN is encountered,
at which time the interpreter returns to the statement immediately following the GOSUB,
GOSUB's may be nested, i.e., a statement within a GOSUB may call another GOSUB., GOSUB's

(L.e., subroutines) are useful for implementing routines that are to be used in several places in a
program. The subroutine can be written once and then called whenever necessary.

GOTO Use: GOTO statement number
Example: 360 GOTO 700

The GOTO causes the interpreter to branch to the specified statement number, and proceed from
there.

IF.GOTO Use:lF expression GOTO line number
Example: 320 [F X1 = 56 GOTO 340

In the IF..GOTO, if the expression is true, the interpreter branches to the specified line number; if
not true, the interpreter branches to the next statement, Note: the IF must be the first command on

the line.
IF. THEN Use: IF expression THEN statement [:statement]..,
Example: 620 [IF X2=T8 THEN X1 =X2 +§
The IF..THEN statement tests the expression. If it is true, the statement(s) following the THEN
are executed; if not true, the interpreter proceeds to the next line of the program without executing

the statement(s) immediately following the THEN. Note that IF statements must not be preceded
on a line by any other statement or an erroneous error message may intermittently occur,

83

ON..GOTO Use:ON expression GOTO line number [,linenumber]...

Example: 10 ON I+] GOTO 25,35,45,55

The ON..GOTO is used to cause the interpreter to branch to any of several line numbers depending
upon the value of the expression, If the expression = 1, the branch will be to the first line number
specified; if the expression = 2, the branch will be to the second line number specified, etc. The
expression must evaluate to the range of 0 to 255 or an error will occur. If it evaluates to zero or to
a number greater than the number of line numbers specified, the interpreter will proceed to the
statement following the ON..GOTO statement. As many line numbers as will fit on the line after

the GOTO may be specified.

ON..GOSUB Use: ON expression GOSURB line number [,line number]...

Example: 340 ON 1+5 GOSUB 35,45,55,65,75

ON...GOSUB is identical to the ON...GOTO above except that the interpreter will retumn to the
first statement following the ON...GOSUB when it encounters a RETURN statement that

terminates the target subroutine.

RETURN Use: RETURN

Example: 560 RETURN

The RETURN statement tells the interpreter when a subroutine is finished. Upon encountering a
RETURN, the interpreter will proceed with the first statement following the previous GOSUB
statement, There may be more than one RETURN statement in a subroutine, but there must be at

least one.

4.H STRINGS

A string is a message that may consist of a collection of alphanumeric and special characters and

that is treated as if it were data. A string variable (i.e., one that ends with $) can be set equal to a string of
characters as in the following example:

C2% = "RUGID COMPUTER"

The string must be in double quotes and may be from 0 to 255 characters long. The following commands
enable you to concatenate, split, truncate, and convert string data. Note that commands that end with $
symbol produce string results; and those that do not, produce numeric results.

ASC

Use: ASC(string expression)
Example: 670 X1 = ASC(C2%)

The ASC operation returns the numeric equivalent of the first character of the parenthesized string
expression. See Section 10 for the ASCII to numeric conversion table. The string expression must
not be the null (i.e., empty) string or an error will occur.

CHRS Use: CHRS(string expression)

Example: 340 C3% = CHRS(13)

The CHRS function returns the one character ASCII equivalent of the parenthesized expression.
See Section 10 for an ASCII to numeric conversion table. The expression must evaluate to the
range of 0 to 255 or an error will occur. The most common use of the CHRS function is to cause
control characters to be sent to a port. The example above would cause C3$ to be set equal to the
ASCII code for carriage return,

LEFTS Use: LEFTS(string expression, length)

MIDS

Example: 220 C3% = LEFT${"RUGID COMPUTER",3)

The LEFTS function extracts the leftmost characters from a string. The number of characters is
determined by the length specification inside the parentheses. In the above example, C3% would be
set equal to "RUG".

Use: LEM(string expression)
Example: 550 X1 = LEN("RUGID COMPUTER")

LEN returns the length of a string expression, i.e., the number of bytes in the string. All characters
including special characters, punctuation, and blanks are included in the count. In the above
example, X1 would be set equal to 14. (The enclosing double quotes are not counted.)

Use: MIDS(string expression, start [, length])
Example: C2§ = MIDS("RUGID COMPUTER",7.4)

The MIDS function returns one or more characters from the specified start location within a string.
The number of characters is specified by the optional length parameter. [f the length parameter is
omitted, all characters from the specified start character to the right hand end of the string will be
returned. The start and length parameters must be in the range of 1 to 255, In the example, C2%
would be set equal to the string "COMP",

RIGHTS Use: RIGHTS(string expression, length)

5TRS

Example: C28 = RIGHTS("RUGID COMPUTER",5)

The RIGHTS function returns the rightmost characters of string. The number of characters is
determined by the length parameter. The length parameter must be in the range of 1 to 255 or an
error will occur, In the example, C2§ would be set equal to "PUTER”",

Use: STR$(expression)

Example: 468 C23 = STRS(234.56)

85

The STRSE function converts the value computed in the expression to an equivalent string. In the
example, C23 would be set equal to the string "234.56".

VAL Use: VAL(string expression}
Example: 440 X1 = VAL("14.9")

VAL returns the numeric equivalent of the parenthesized string expression. In the example, X1
would be set equal to 14.9.

Concatenation:

Strings may be concatenated, i.e., added together, simply by connecting them together using +
symbols. For example, the following series of statements would set C2% equal to "PLOTTING";

10 AS = "PLO"
20BE="TT"
30 C$ = "ING"

40C2§=A3 +BS +CH

4.1 INPUT/OUTPUT STATEMENTS
GET Use: GET string variable
Example; 140 GET C2§

GET reads the input buffer corresponding to the port specified by PO%. The options for
ports to be specified by PO% are:

0 Keyboard

1 R5232 terminal port

2 R8232 modem port

4 Speech synthesizer status
5 Modem/tone control

The port to be read must be specified by writing the appropriate port identifier into PO% before
executing the GET statement. GET will return a single character if the port buffer is not empty. If the port
is empty, the null string will be returned. An easy way to determine if a character was input is to test the
length of the string variable using LEN. When asking the user for an input, be sure to flush the buffer
before prompting for an input in case old data is already in the buffer. After executing the GET statement,
the interpreter will proceed with the next statement whether or not data are present in the input buffer.
Therefore, you will need to repeat the GET statement until a complete character string is received. You can
continue with other operations while waiting for user inputs by interleaving GET statements with other
operations in the program until a complete response is received from the user.

INPUT Use; INPUT ["prompt string";] variable [,variable]...

Example: 234 INPUT A,B,CS

86

FRE

REM

i e T T R e

INPUT requests data from the previously specified port (PO%=X), and will wait indefinitely for an
input until all variables listed in the INPUT statement have been entered. Far this reason, INPUT
should not be used if cessation of data sampling and control cannot be tolerated, The GET
command is generally more useful for real time applications. Variables entered must be separated
by commas. The last value typed must be followed with a carriage retum. The prompt string is
optional and, if included, will be displayed upon execution of the INPUT statement. If a RETURN
is typed in response to an INPUT statement, the BASIC interpreter will go to the command mode.
Typing CONT after the program has been interrupted in this manner will cause the program to
resume execution with the INPUT statement. Rather than use the print statement, we recommend
that the KBTOX routine in the examples in Appendix B be used.

PRINT Use: PRINT expression [,expression]...

Example: 25 PRINT A,B:C$

PRINT will cause the interpreter to print the expressions specified to the port specified by PO%.
Valid PO% values are;

PO% Port

Onboard LCD display
RS232 terminal port
R5232 modem port
Parallel printer port

Speech synthesizer
Modem/tone control

L¥ T N R R = |

The value of PO% must be specified before executing the PRINT statement, The list of values

sent to the port will be terminated with a carriage return unless a comma or semicolon follows the list of
expressions to be printed. If a semicolon separates two expressions, they will be printed adjacent to each
other; if a comma separates two expressions, they will be tabbed to begin printing every tenth character
position with spaces inserted as necessary. Expressions to be printed may be numeric or string expressions.

When printing to the onboard LCD display, the display will scroll up and line feed as any terminal

would unless special characters are sent to position the cursor appropriately. Variables CC% and CR%
control the next location to be written. In graphic mode, CC% has a range of 0 to 255 and specifies the
display dot column to be written next. CR% has a range of 0 to 63 and controls the dot row to be written
next. In character mode, CC% has a range of 0 to 39, and CR% has a range of 0 to 7.

4.K MISCELLANEOUS OPERATIONS

Use: variable = FRE(0)

Example: D% = FRE(D)

FRE returns the number of bytes left in the write protected RAM array, i.e., the amount of program
space available. The 0 is a dummy operand.

Use: REM any text

Example: 340 REM THIS IS A REMARK

87

USR

WAIT

The remark statement is used to insert an explanatory comment into the program. Remark
statements are not executed. Statements should not follow REM statements on a line because the
REM statemnent causes the interpreter to skip the rest of the line.

Use: variable = USR{operand)
Example: 440 DU = USR(14)

USR. calls a user defined assembly language subroutine and transfers the operand in BASIC's
floating point accumulator. The advantage of calling an assembly language routine is that it will
generally execute much faster than the equivalent BASIC routine. Upon executing the USR
instruction BASIC will fetch the starting location from memory locations 4 (L.S) and 5(MS) and
jump to it. The subroutine starting address must be contained in these addresses or erroneous
operation will result. Use POKE to establish these values before executing the USR instruction.
The subroutine must end with a RTS (return from subroutine) instruction. BASIC execution will
then proceed with the statement following the USR instruction. As many parameters as desired
may be passed between the user's subroutine and BASIC by using the PEEK and POKE
nstructions,

Lise: WAIT address, mask [,invert]
Example: 330 WAIT AB,C

WAIT is used to test a particular byte for one or more bits to assume a particular state. When
executed, WAIT reads the contents of the specified address (A), exclusive OR’s the contents with
the optional invert byte (C) if present, and then AND's the result with the mask (B). It will continue
to sample the byte in this manner until the result is nonzero, at which time the interpreter will
proceed with the next statement. To test to see if a particular bit is a one, omit the invert operand
and set the corresponding bit in mask to a one. To test for a zero bit, set the corresponding bit in
both mask and invert. The following statement will wait until the most significant bit of byte
location 1456 is a zero:

400 WAIT 1456,128,128

The WAIT statement should not be used if continuous realtime operation is required.

38

SECTION 5

2.0 CRC COMMUNICATIONS

The RUGID operating system provides background software that implements secure inter-unit
communications using CRC-16 (16 bit Cyclic Redundancy Check) geometric code error checking as
described in this section. All the message formats described work with port 2 using any of the hardware
standards implemented.

5.1 GENERAL DESCRIPTION

In typical operation an initiating unit sends a message to a destination unit. The message may
contain data intended for the destination unit, or it may be a request for the destination unit to send data
back. The destination unit then responds appropriately and the interchange is finished. For the exchange to
be regarded as successful, the initiating unit must receive a response to the initiating message to confirm
that the message was accepted. Each message contains a CRC field to validate the accuracy of the message.
If a message is received with an invalid CRC, the message is discarded and no reply is generated. If the
CRC is correct, then the received data are placed in the receiving array, AR%({SN,I), where SN is the
address of the sending station. Then, a reply is generated and sent to that station containing data in the
receiving station's AT%(SN,I) array. This is purely a background function. The initiating station's BASIC
program iniates the transmission by POKEing to a specific location. Background software transfers the
contents of the AT%() array to the unit's output buffer along with header information and CRC security,
which it calculates, BASIC then waits for a change in the received data (AR%()) in order to detect that a
response was received with correct CRC,

5.2 CONFIGURING RUGID FOR CRC COMMUNICATIONS

When RUGIDs are delivered, they are set up for standard ASCII communications on both
communications ports The modem pert, port 2, can be configured for full CRC communications by altering
two bytes: the configuration byte and the transmitter delay byte. Note that the two bytes reside in the
RUGID voted, protected RAM and are replicated 3 times each. You must therefore install the two bytes in
three locations each as indicated. These can be set using the monitor memory alteration capability, but it is
much easier to load and run the supplied program DIAGNOSX.CMP. That program will prompt you for
operating mode, transmitter delay, station address, baud rate, etc. using its modem port (port 2)
configuration capability. In addition to setting the port mode and timing characteristics, your program must
dimension one or more of the arrays indicated below, so that RUGID background software will have a place
to store incoming data, and a place to get data that is to be sent.

BIDIRECTIONAL TRANSFER ARRAYS:
ARY(S,N) Receive virtual analogs

AT%(S,N) Transmit virtual analogs
Where: S=station number, N=index of analog value

89

REGISTERS WITHIN RUGID TQ CONTROL OR. MONITOR CRC COMMUNICATIONS:

LOCATION

$0251=593
$03D3=979
$021D=541
S02]1E=542
S04D0=1232

$TF03=32515

FUNCTION

80 Byte transmit buffer

80 Byte receive buffer

Triggers CRC message transmission

Destination address of BASIC-triggered transmission
Acknowledgement:

$FF=255=no reply

O=remote is running BASIC

I=remote is in command mode

2=remote is in monitor mode

Unit address

CONFIGURATION BYTE:

Location: $7FOB, $7F1B, $7F2B (=32523, 32539, 32555)
7 6 5 L 3 2 1 [0
Diagnos: | Spare Diagnostic Port 2W/iAW Spare TLM Mode:
0=CFF 00=LCD 0=2W 00=RUGID
1=0N 01=Terminal 1=4W 01=CRC
02=Modem 02=ASCI
03=Printer

Most commonly used settings:

£00=ASCII communications
$09=CRC communications

TRANSMITTER DELAY BYTE:
Location: B7FOC, $TF1C, $7F2C (=32524, 32540, 32556)
7 | 6 5 | 4 [3 | 2 | 1 |0

nulls preceding
message, 0 to 3

Delay in 56ths of a second between assertion of transmitter key and audio tone

and the sending of message.

Most commonly used settings:

£10=RUGID telephone modem system
$30=5low radio system

5.3 INITIATING TRANSMISSIONS FROM BASIC

Once the RUGID is configured for CRC type communications, BASIC needs to control two
bytes to implement transfer of entire arrays between itself and another unit. The following procedures
should be followed:

5.3.1 BIDIRECTIONAL TRANSFERS

Included in operating system versions 3.2A and later are message formats that enable data to be
included in both the outgoing and reply messages. CRC at the end of the message checks the entire
message. Information to be sent must be loaded into array AT%{(S,N); information received will be stored
in array AR%(S,N), where S is the station address, and N is the index pointing to the two byte values to be
transferred. Therefore, each station in a system must dimension two arrays, AT%(S,N) and ARY(S,N), to
hold data to be sent and received, respectively. The dimension values § and N must each be less than 256.

The main difference between the RUGID communication protocol and others is that the RUGID
systern does not pre-define the contents of the data field in each message. The programmer has full
freedom to define what type of data goes where in the format. Typically, we assign the first byte for bank
selection and transmission flag; bytes 2 through 8 for status information (on/ofY flags, alarms, echoes of
digital inputs, commands to output relays, HOA bits, ete.; and the remainder for analog information such
as setpoints, tank levels, flows, totalizations, etc. Sometimes, we can combine a few bits of status data
with an analog value in a single 16 bit word to save space. The important thing to realize is that its up to
the programmer to decide the contents of the telemetry array; and therefore, imperative that he understand
and establish early in the software design process the specific data to be transferred in each word of the
telemetry arrays.

In a typical transfer, the initiating station will load the AT% array with outgoing data, and then
trigger the transfer, The destination station will receive the data and store the data in its AR% array. It
will then reply with the contents of its AT%s array which the originating station will store in its AR%
array. The originating station controls the number of words sent from the AT% array, and the number of
words the destination station is to send back by writing those numbers in AT%(5,0) and AR%:(S,0)
respectively, representing the highest array index to be transferred (255 maximum). Values in AT%(5,0)
and AR%(S,0) will not be transferred and will be unaffected by the transfers.

At most, 32 words (64 bytes) of data can be sent in any message. If AT%(5,0) or AR%(5,0)
contains a value higher than 32, then the 32 words in the array up to and including the index specified in
AT%%(S,0) or AR%(5,0) will be transferred. See section 5.6 for messape formats.

The following example assumes initiating station #3 wishes to transfer AT% words | through 13
to station #7's AR% array, and receive station #7's AT% words 5 through 37. In particular, the following
transfer would take place:

INITIATING STATION #3 DESTINATION STATION #7
Initiating

AT%(T,1) to AT%(7,13) > AR%(3,1) to AR%(3,13)
Reply

AR%(7,5) to AR%W(7,37) < AT%(3.5) to AT%({3,37)

To acecomplish this, the following procedure would have to be followed in the program at station #3 (no
action is required at station 7):

1. Write desired data to AT%(7,1) through AT%(7,13).

2. Write AT%(7,0)=13 to specify highest index to be sent out. Write AR%(7,0)=37 to specify
highest index to be returned.

91

3. Poke destination unit's address in location $021E=542, i.e., execute POKE 542,7.
4, Poke message type $60=96 in location 541, i.e., execute POKE 541,96,

5. Monitor one entry in AR%(7,I) to detect a change. At RUGID, we use the MS bit of
AT%{SM,1) to hold a transmit flag that the receiving BASIC program can detect and clear.

6. The data transferred from the destination station is now in AR%(3,5) through AR%(3,37).
5.3.2 STORE AND FORWARD OPERATION

In radio applications where some stations are not visible to others such as in long canal or
pipeline systems or where some stations are located behind mountains or in canyons, it will be desirable to
have certain RUGID units store and forward messages between units that otherwise cannot communicate,
This can be implemented by installing station addresses specifying the path the message is to take in the
preassigned array FW%(). The following FW%u() array entries must be supplied for each attempted
communication:

ARRAY ENTRY FUNCTION

FW24(0) Specifies how many stations involved (3 to 13)
FWY%i(1) ' Source address (initiating station)

FW2a(2) Address of first station to forward message
FW%(3) Address of second station to forward message
FWu(N) Destination station address

In operation, array elements FW%(1) through FW%(N) are installed by background software in the
message to specify the path before the initial transmission. Each receiving station checks CRC and then
checks if the message is destined for it. If so, it then checks if its address is contained in the path. If so,
the station will transfer the message from its receive buffer to its transmit buffer, install its own address as
the source address, recalculate CRC, and retransmit it. The path is followed in reverse for the reply
messages. Note that even if all stations can successfully receive all messages, the message will still
follow the specified path due to the method of handling address security within each unit. This is a
powerful store and forward implementation because the initiating station specifies the path and makes the
ultimate decision whether the message was transferred successfully. Therefore the initiating station can
specify an alternate path and retry the message if a succession of failed messages occurs with the initial

path
5.3.3 TEXT TRANSFERS

Strings can be transferred to remote stations using bidirectional transfer message type $70 (112).
In this scheme, the Basic program writes the string into string variable AA$, specifies the destination
station address, then triggers the transfer by poking the message type. The following program segment
would send the string "Hello RUGID station" to remote station 13:

100 AAS="Hello RUGID station" 'Load the string
200 POKE 542,13 'Specify the remote address
300 POKE 541,112 "Trigger the transfer

At the remote station, the string would appear in the port 1 input buffer as if it had arrived from a local
terminal. This technique can be used to send messages to remote sites to await personnel when they
arrive, or to pass display information. It can also be used to delete and reload the program at the remote
site,

5.3.4 MESSAGE FORMATS, BIDIRECTIONAL TRANSFERS:

HEADER
Byte] 1 2 3 4 5 6
Function |ID Sender Receiver | Message | High High Message
Address Address Type Transmit | Reply Length
Index Index
Example | 583 £03 504 $64 $0D=13 $25=37 $1B=27
Forward DATA FIELD Security
Path
Bytes 7-10 11-24 23,26
Function | Fwd Path AT%(7,1) through AT%(7,7) CRC-16
Example | 34,57 00,01,00,02,00,03,00,04,00,05,00,06,00,07 CRC-16
REPLY:
HEADER
Byte 0 1 2 3 4 5 4]
Function |ID Sender Receiver | Message Hi Error Message
Address Address Type Transmit | Reply Length
Index
Example | $33 07 05 HE4 $25=37 00 $4D=77
Forward DATA FIELD Security
Path
Bytes 7-10 11-75 76,77
Function | Fwd Path Destination's AT%(1,5) through AT%(1,37) CRC-16
Example | 34,57 00,05,00,06,00,07......00,37 CRC-16
EXPLANATION:

Initiating station #3 sends AT%(7,1) through AT%(7,7) to receiving station #7 where the 13
words transferred are stored in AR%(3,1) through AR%(3,7). Destination station #7 replies by sending
words AT%(3,5) through AT%(3,37) to station #3 where the 32 words are stored in AR%(7,5) through
AR%(7,37). The values shown in header bytes correspond to those in the example in section 5.3.3.
Addresses The forward path specifies that the message be transfered from station 3to4t0 5t 7. To
accomplish this forwarding, array FW%/{) must have the following values:

FW%(0)=4 (4 stations total in communication)
FW%(1)=3 (Initiating station is address #3)
FW%(2)=4 (First forwarding site)

FW%(3)=5 (The next forwarding site)
FWo%(4)=7 (The destination station address)

93

5.4 MODBUS FORMAT MESSAGES

All RUGH units with operating system versions 3.2L and later support MODBUS format
messages ON PORT 1. This mode is intended to enable a RUGH unit, acting as a master communications
controller in a system of multiple RUGID's, to pass information between a PC master computer and the
field RUGID's. Communications between the master RUGID and the remote RUGID's would still use the
CRC secured formats described above, and data would still be passed between AT% and AR% arrays.
However, communications between the master RUGID and a PC computer would use the MODBLUS
protocol. This enables any of a number of software packages that support the MODBUS protocol to act as
PC masters to RUGID systems. This mode of operation is invoked by setting bit 2 of locations §7FOF,
£7FIF, and TF2F to a "1"; i.e,, if these locations were to have a content of $40 (usually the case) then they
should be set to $42,

RUGH units with operating system versions 3.4B and later support longer MODBUS messages
(up to 255 bytes/message) and allocate more telemetry space per field RTU (256 bytes per RTU) by using
a RAM bank in the master RUGHE to hold the field data base. The RAM bank consists of a single 32K
board with the first chip installed and allocated for telemetry use with a single 256 byte page used for each
field RTU and 128 pages total. This mode is enabled by tuming on bits 2 and 4 in locations $TFOF,
$7F1F, and $7F2F. See paragraph 5.7.2 below.

Timing of MODBUS messages is handled by background software. Basically, the RUGID acts
as a slave to the PC master, responding when polled. Since the MODBUS format has no sync byte, the
RUGID will resynchronize whenever a gap is seen in the data received from the PC. The time of the
required gap for resynchronization is set in memory location $022B=553 in 56ths of a second. The
allowed range is 1 to 255. Upon boot up, the register will be set to 56 for a default delay of one second.
Therefore, to set the delay for anything other than one second, the BASIC program must set the byte after
each boot up. To set the delay to 2 seconds, BASIC would execute the following:

POKE 555,112

5.4.1 MODBUS MESSAGES SUPPORTED

RUGID units support the following MODBUS messages:

MSG TYPE | STANDARD | RAM BANK DESCRIPTION
MODE MODE
1 E Read output status
3 x 7 Read IO registers
4 * i Read I/O registers
5 * Preset single coil
o " Preset single register
16 * . Preset multiple registers

04

5.4.1.1 MESSAGE TYPE 1..READ OUTPUT STATUS

Message type | is used to read specific bits in the AT%() array as if they were phisical outputs,
The format is the following:

Byte 0 1 2) 3 4 | 5 aal: 17

Function | Station | Message Data Start Number of Bits to CRC-16 Security
Address Type Read

Example $05 $01 $00 | $01 $00 | 528 $XX | $XX

REPLY:

Byte 0 I 2 3 Rl 5 [7 8,9

Funct | Sta. | MSG # Bits - | Bits 9-| Bits | Bits Bits | CRC-
Addr | Type | Bytes B 16 17-24 | 25-32 | 33-40 16

Val 05 01 03 01 02 03 04 05 | XXX

5.4.1.2 TYPES 3 and 4...READ MULTIPLE REGISTERS

RUGID units respond identically to MODBUS commands 3 and 4 to read multiple registers.
Basically, these messages enable the PC to read data received from a remote RUGID unit {the master's
AR%(S,N) array), or to read data sent to a remote RUGID (the master's AT%(S,N) array). If the PC
requests to read registers numbered lower than 255, then RUGID will respond with the contents of the
AR%() array (received from a remote site). [f the PC requests to read registers numbered higher than 256,
then 256 will be subtracted from the register address, and the contents of the resulting registers from the
AT%() array (transmitted to a remote site) will be returned to the PC. The following examples illustrate
the request/response dialog:

READ AR%s(5,2 to 8)...Read station 5 received registers 2 through 8:

REQUEST:

Byte 0 1 G- 3 4 [5 6 | 7

Function | Station | Message | First Register to Read | Number of Registers CRC-16 Security

Address Type to Read

Example 805 503 s00 | S02 $00 | %07 $A4 | S4C

REPLY:

Byte 0 1 2 34 5,6 7.8 9.10 11,12 | 13,14 | 1516 | 17,18

Funct | Sta. | MSG it Reg2 | Reg3 | Regd | Reg5 | Reg6 | Reg7 | Reg8 | CRC-
Addr | Type | Bytes 16

Val 05 03 OE 00,01 | 00,18 | GO0OE | 00,1D | 00,06 | 00,5A | 00,06 | 78,85

95

READ AT%(5,2 to 8)...Read station 5 transmit registers 2 through §:

REQUEST:

Byte 0 1 S [& | 5 T

Function Station | Message | First Register to Read | Number of Registers CRC-16 Security

Address Type to Read

Example $05 $03 $01 | 802 $00 $07 $A5 | $BO

REPLY:

Byte 0 | 2 34 5,6 7.8 910 | 11,12 | 13,14 | 1516 | 17,18

Funct Sta. | MSG # Reg2 | Reg3 | Regd | Rep5 | Reg6 | Reg7 | Reg 8 | CRC-
Addr | Type | Bytes 16

Val 05 03 OE | 00,02 | 00,03 | 00,04 | 00,05 | 00,06 | 00,07 | 00,08 | FA,IS

5.4.1.3 MESSAGE TYPE 5..PRESET SINGLE COIL

This message is used to set or clear a single pseudo output; i.e., a single bit in the AT%() array.

REQUEST:
Byte 0 | g o =g 4 5 o
Function | Station | Message Coil to Preset ON or Spare CRC-16 Security
Address Type MS.LS OFF $00 | (always
or §FF ZETO)
Example $05 $05 $00 | 815 $00 $00 XX | XX
REPLY (Same as request):
Byte 0 1 = 1 3 4 3 [| 7
Function | Station | Message Coil to Preset ON or Spare CRC-16 Security
Address Type MS,LS OFF 500 | (always
or 3FF Zero)
Example $05 $05 $00 | $1s $00 $00 XX | XX

96

5.4.1.4 MESSAGE TYPE 6..PRESET SINGLE REGISTER

This message is used to preset a value into a single 16 bit register. The message example below

sets AT%(5,21) to a value of 7.

REQUEST:

Byte 0 1 - S | - i ol o

Function Station | Message Register to Preset Data Value to Send CRC-16 Security
Address Type MSLS MS,LS

Example $05 $06 s00 | §15 $00 | %07 XX | XX

REPLY (Same as request):

Byte 0 1 s 1 3 U e I

Function Station | Message Register to Preset Data Value to Send CRC-16 Security
Address Type MS,LS MS,LS

Example $05 $06 $00 | $15 $00 | %07 XX | XX

5.4.1.5 MESSAGE TYPE 16.. WRITE MULTIPLE REGISTERS

In order to write to multiple registers, the PC issues a command that specifies RTU address,
starting register number, number of registers to be written, and contents of each register. RUGID then
stores the data in the addressed AT%(S,N) array entries. The following example illustrates the process:

WRITE values 3, 4, 5 and 6 to AT%(1,3 to 6):

REQUEST:
Byte 0 1 23 4,5 -] 7.8 910 | 11,12 | 13,14 15,16
Funct | Sta. | MSG [st # |#Data| Regd | Reg4 | Reg5 | Reg6 | CRC-16
Addr | Type | Regto| Regs | Bytes
Write to
Write
Val 01 10 | 00,03 00,04 08 | 00,03] 00,04 [00,05 | 00,06 | E0DBD
REPLY:
Byte 0 | 2 | 3 4 | & 6 | 7
Function | Station | Message | First Register Written | Number of Registers CRC-16 Security
Address Type Written
Example $01 $10 $00 | $03 so0 | S04 $31 | S$CA

97

5.4.2 MODBUS MESSAGES USING MASTER RAM BANK

Operating system versions 3.4 B and later support the use of chip one of the RAM bank to store
telemetry data retreived from and destined for field RTU's instead of using the AT%{) and AR%() arrays.
This frees up substantial RAM in the master unit, and allows the master to interface with up to 128 field
RUGE's. Each field RUGH is allocated one page (256 bytes) for telemetry storage within the RAM bank.
The page number corresponds to the field RTU address, i.e., page 3 is used for RTU address number 3.
Also, the first byte of the MODBUS message must now match the address of the master unit (usually 1);
and the RTU slave address is now contained in the "first register" field of the MODBUS message. With
this design, up to 256 RUG6s can be connected to a single MODBUS master, using the first message byte
to address these units; and each RUG6 can have up to 128 RUGHE slaves communicating using the RUGID
CRC secured format.

54.2,1 RAM BANK ORGANIZATION FOR MODBUS USE

Each 256 byte RAM bank page is organized as illustrated below. Basically, the page is organized
as 128 words with the first collection of words used for outgoing data to a field RTU, and the remainder
used for data that have been received from a field RTU. The last three bytes of the page contain special
information as follows:

Byte $FD=253 Number of words to transmit.
Byte $FE=254 First word of receive field in RAM bank,
Byte $FF=255 Number of words to recieve,

EXAMPLE: One page allocating |1 words for transmit, 33 words for receive, and specifying word 39 as
the first word to hold received data.
< 32 bytes, 16 words >

00<==—==—=====TX these words (I to | | j————=>12.............>

IE-qnl..qp..-........-......uu..u.-.--.--u.-u-u.--.nrnnr-.n.-.r mEAERAERE RS R R ER S

i v PRRPR, |
48 Receive these words (39 to 72)

98

|

5.4.2.2 TYPES 3 and 4..READ MULTIPLE REGISTERS

RUGID units respond identically to MODBUS commands 3 and 4 to read multiple registers.
Basically, these messages enable the PC to read data received from a remote RUGID unit (in the master's
receive area in the RAM bank), or to read data sent to a remote RUGID (the master's transmit area in the
RAM bank). The following examples illustrate the request'response dialog:

Read station 5 registers 2 through 8:

REQUEST:

Byte] 1] | 3 4 | 5 [| T

Function Station | Message | First Register to Read | Number of Registers CRC-16 Security

Address Type to Read

Example 501 $03 s05 | s02 $00 | $07 XX | SXX

REPLY:

Byte 0 1 2 34 | 56 | 78 | 9,00 | 1,12 13,14 15,16] 17,18

Funct | Sta. | MSG B Reg2 | Reg3 | Reg4 | Reg5 | Reg6 | Reg 7 | Reg 8 | CRC-16
Addr | Type | Bytes

VYal 01 03 0E 00,01 | 00,18 | 00,0E | 00,1D | 00,06 | 00,5A | 00,06 | XXXX

5.4.2.3 MESSAGE TYFE 16..WRITE MULTIPLE REGISTERS

In order to write to multiple registers, the PC issues a command that specifies RTU address,
starting register number, number of registers to be written, and contents of each register. RUGID then
stores the data in the addressed RAM bank area. The following example illustrates the process:

WRITE wvalues 3, 4, 5 and 6 to station 5 registers 9 through 12:

REQUEST:
Byte 0 1 23 4,5 6 7.8 910 | 11,12 | 13,14 15,16
Funct Sta. | MSG Ist |#Regs| #Data| Reg3 | Reg4 | Reg5 | Reg6 | CRC-16
Addr | Type | Regto to Bytes
Write | Write
Val 01 10 | 05,00 | 00,04 | 08 | 00,03 | 00,04 | 00,05 | 00,06 | XX,XX
REFPLY;
Byte 1 2 | 3 & | '3 6 | 7
Function Station | Message | First Register Written | Number of Registers CRC-16 Security
Address Type Written
Example $01 $10 $00 | $09 $00 | S04 $XX | BXX

Whenever the master unit writes to one or more registers using the above message, the addressed RTU
will be indicated in location $0220 (544).

100

SECTION 6

6.0 HOWTO...

In this section you will see how to do some things that you may not find specifically addressed
elsewhere in this manual. Such topics as controlling peripherals, changing batteries, etc. are discussed.
There are three ways to control or read any peripheral on the main or expansion board. One is to
use the predefined variables via BASIC; another is to use PEEK or POKE, also from BASIC. The third is
to write an assembly language routine that accesses the peripheral directly. This third method is usually
considerably more involved than accessing the port from BASIC, but gives faster control. This manual does
not address assembly language programming,.

6.1 TURN ON A DIGITAL OUTPUT (RELAY)

The main field terminal board is equipped with relays capable of controlling AC or DC loads. To
control any of these digital outputs, it is simply necessary to set the corresponding entry in array DO%(N)
equal to 0 to turn it off; equal to 1 to turn it on, and equal to 2 to make it flash on and off every half second,
where N specifies the output channel to be controlled. For example, to turn on relay 3 and turn off relay 4,
the following statement would be required:

230 DO%(3)=1: DO%(4)=0

When controlling the status outputs from assembly language programs, two precautions are necessary.
First, the output latch is a UCN5801 octal latch/driver which may be written but not read. Therefore you
must keep a copy of the latest byte written to the device in order to know what states are in effect. This is
important in cases where you want to alter the state of one bit without effecting the others. The second
precaution is related to the first. If you are controlling one or more bits of a digital output from an assembly
language routine, you must not control others from BASIC. This is because BASIC keeps its own copy of
the port byte, the entirety of which will be written to the port whenever any bit is written.

Note that the different RUGID models have differing complements of base relay capability, and
employ unused relay drivers for other functions as defined in the table below,

101

DO%a() CHANNEL RUGH RUGT RUGE
DO%a(1) RELAY #1 RELAY #1 RELAY #1
DO%(2) RELAY #2 RELAY #2 RELAY #2
DO%(3) RELAY #3 RELAY #3 RELAY #3
DO%(4) RELAY #4 RELAY #4 RELAY #4
DO%(5) RELAY #5 ON=puts unit to sleep
DO%(6) RELAY #6
DO%(T) RELAY #7 ON=Enable hi rate

battery charge
DO%a(8) RELAY #8 ON=turn on display
backlight

6.2 FLASH A DIGITAL OUTPUT ON AND OFF REPEATEDLY

For alarm annunciation, you may want to flash a digital output repeatedly. To do this you must
simply write a 2 to the output. For example, to flash digital output #4, the following statement would be

required:
240 DO%(4)=2

The output will flash until a different value is written to the output. Note that if you execute the statement
DO%(8)=2 on a RUG?, it will cause the display backlighting to flash on and off.

6.3 READ A STATUS INPUT

There are 8 to 16 status inputs on the main circuit board and 32 on each expansion board. Any
may be read by reading the corresponding entry in the digital input array DI%(N), where N specifies which
input is to be read. For example, the following statement reads digital inputs 7 and 12 and puts the results
into variables A and B respectively:

400 A=D1%(7): B=Al%(12)

When read, a 0 means that the input is high or open; a 1 means the input is low. A closed contact will
produce a 1.

6.4 READ AN ANALOG INPUT

Analog inputs may be read by accessing BASIC array Al%(N), where N specifies the channel to
be read. The 10 bit A/D converter on the main board produces values of 0 to 1023 when the input voltage
spans 0 volts to +5.0 volts. Whenever the array Al%s(N) i defined, monitor software will scan the analog
inputs, applying one at a time to the A/D converter. The A/D converter output is then stored in the AI%(N)
array. This process is interrupt driven and is transparent to and asynchronous with any other process. We do
not advise that you attempt to control the A/D converter using assembly language due to the complexity of
the multiplexing and interrupt interface tasks. As an example of how to read the analog values, the
following BASIC statement reads analog inpuis 1 and 5 and stores them in variables A and B respectively:

290 Al%(0)=4372 'Sets Al's for | sample per second
205 A=AT%(1): B=AI%(5)

102

.

6.5 CONTROL AN ANALOG OUTPUT

Analog outputs are multiplexed in a manner similar to the analog inputs, so control by assembly
language routines is not recommended. Control through BASIC is quite convenient, however, requiring only
that you write the desired output value in the range of 1 to 4095 to an array entry AO%(N), where N is the
channel number you wish to control. For example, if you wish to have analog output 2 put out a value of
20% of full scale, the following statement would suffice:

220 AO%W(2)=.2*4095

6.6 PROGRAM A TIME DELAY

Time delays are almost always required in control applications to establish sample intervals, cycle
equipment, etc. There are at least 3 ways to generate time delays using the RUGID computer. The first and
least desirable is to use a software loop such as a FOR.. NEXT loop with a large target value to generate the
delay. This is undesirable because no other processing can be done while the loop is running, Two more
desirable ways are to use the preassigned timer array DT%(N), or to use the real time clock.

Once per second the interrupt process examines the array DT%() for entries not equal to zero, If
any are found, they are decremented by one. The decrementing ceases when the value in the register
reaches zero. Therefore, you can set a time delay into one or more of the entries in DT%(N) and test for
when it reaches zero. When it does, the time delay has passed.

An alternative way is to read the real time clock, add a value to it equal to the delay you want, and
store that value in an array, Every time through the program cycle compare the stored value with the real
time clock value, and take action when the real time clock value exceeds the stored value. This is much less
convenient than using DT%(N), so that method is recommended. A more practical use of the real time
clock is to trigger actions at a particular time of day. For example, if you want to trigger a printed report on
each hour, the following statements would cause a jump to a printing subroutine (PRNT) on each hour:

IF CT%<>CK%(2) THEN CT%=CK%(2):GOSUB PRNT

In the above statement, CT% contains the present hour value. 'When the real time clock hours value
(CK%{2)) changes, the printout commences. Note that the statement is part of a larger program that makes
this test as it passes through. In general, every program will operate in this fashion because it must do many
things seemingly at once, and, therefore, cannot stop to dwell on any single test. The use of the real time
clock is much preferred to using DT%(N) in this instance because DT%(N) would accumulate a clock drift
if BASIC did not sample it at least once per second. Using the real time clock eliminates this problem
because the clock continues running after the time setpoint is reached.

6.7 HOOK UP A 4-20 MA. TRANSDUCER

Many industrial applications rely upon the 4-20 ma. current loop standard for transmission of
analog information. This standard has the advantage that the analog measurement is transmitted as a current
rather than as a voltage, making it less susceptible to noise and making it independent of the impedance in

103

the wires over which the measurement is transmitted. The way it works is quite simple, A DC power supply
sources voltage to the transducer over the positive wire to the transducer. The transducer is designed to act
as a current valve, adjusting the current that it will let pass in proportion to the analog value it is measuring.
The negative wire from the transducer is connected to one of the analog input ports on the RUGID
computer, causing the loop current to pass through the input voltage divider resistors in the input circuit.
When a current passes in the loop, the bottom resistor converts it to a voltage which is fed to the A/D
converter where it is converted to a number. Connecting the RUGID computer's analog common to the
power supply negative terminal completes the loop. Figures 3.0A and 3.0B illustrate the necessary
connections. The power supply voltage should satisfy the following relationship:

Volts > 4 + (.02 * Loop Impedance) + Transducer Voltage

The required transducer voltage is usually in the range of 12 to 24 volts. One advantage of the current loop
technique is that other instruments, such as analog recorders, meters, etc. can be inserted in series with the
loop without degrading the accuracy of the measurement as long as the selected loop power supply voltage
accounts for the additional voltage drops. Twisted shielded pair wire should be used with the shield tied
only to the RUGID computer's analog common,

6.8 READ AND SET REAL TIME CLOCK VALUE FROM PROGRAM

The real time clock/calendar may be written or read at any time from BASIC simply by accessing
array CK2%(N). Writing to CK%(N) causes the processor to download the entire contents of CK%(N) to the
clock/calendar integrated circuit. Since the clock/calendar chip remains powered during a power outage,
time and date information will not be lost during an outage. The clock/calendar information is used by the
monitor to record time of occurrence of BASIC errors for the "F" function. As an example of real time
clock accessing, the following software computes the length of power outages to the unit:

In the initialization program:

50 PZ=CK%(2)+60*CK%(1)+3600*CK%(0)-PP ' compute outage length
55 IF PP<0 THEN FPP=PP+24

In the cycling program: .

500 PP=CK%(2)+60*CK%(1)-3600*CK%(0) 'save current clock value

In the above statements, PP keeps track of the current time of day in hours; PZ contains the length of the last
power outage. Additional statements would be necessary to keep track of outages exceeding 24 hours.

6.9 HOOK UP AN EXTERNAL BATTERY BACKUP

RUGH6 and RUGT units are equipped with battery chargers to facilitate battery backup applications.
To connect a battery, simply hook its positive and negative terminals to the BATT+ and BATT- terminals
on the RUGID's field board, respectively.

104

6.A CHANGE ONBOARD LITHIUM BATTERY

The onboard Lithium battery can power the RAM and real time clock for approximately 2 years of
power cutage. The battery does not discharge during the time the unit is powered up. In order to change the
onboard Lithium battery, it is necessary to remove the main circuit board from the unit, replace the battery,
then reassemble the unit. Be sure that you have a type BR 2325 or equivalent coin type battery on hand for
replacement. Follow this procedure:

l. Bemove power

2. Remove unit top cover

3. Remove ribbon cables from main board (front board in housing).

4. Pull circuit board out and set on NONCONDUCTIVE surface with component side up.

5. Locate the large coin-shaped battery in a black plastic holder near the front of the main circuit hoard.

6. Remove the battery from the holder and replace with the new one, positive terminal up. You may have
the battery out of the unit for up to 2 minutes without loss of program or real time clock data.

7. Place the main circuit board back in the unit and replace the cover.

8. Reapply power and verify that the program and real time clock contents are intact.

6.B REPLACE FUSE

The fuse is a 3AG 2 amp standard blow type mounted in soldered on clips on the main field
terminal board. There is no fuse on the main board. In normal operation, the fuse should never blow.
Therefore, you should ascertain and correct the problem that lead to the fuse blowing before replacing it,
Follow the procedure below for replacement:

1. Disconnect AC power,
2. Remove fuse.
3. Replace with 3AG 2 amp fuse,

6.C DISPLAY LAST BASIC ERROR MESSAGE

Because errors can occur infrequently and often at times when the unit's operation is unobserved,
the RUGID computers store the last error and time and date of occurrence. To examine the last error to
occur you must exit the program and enter the monitor by hitting “K*K"K. Then hit the F key and the unit
will list the last error and time of occurrence,

6.0 CONTROL MEMORY WRITE PROTECTION

Write protection is present in order to protect the program and critical data from inadvertent
erasure due to program bugs or transients. It is possible to run the unit with write protection continuously
removed, but one occurrence of a program erasure will convince you of the necessity of this feature. The
RUGID computer's write protection is implemented using a 2.4 second time delay that must expire before
the memory may be written. The following routines remove and install write protection:

105

To open RAM:

100 A=PEEK(969) AND 191:POKE 969,A:POKE 34800,A
(Wait 3 seconds, then RAM will be open.)

100 A=PEEK(969) OR 64:POKE 969 A:POKE 34800.A
(RAM will be closed immediately.)

6.E AUTODIAL A TELEPHONE NUMBER
To dial a phone number, you must;
1) Go off hook
2) Wait for dial tone
3) Dial the number

The following code segment accomplishes these tasks:

100 PO%=5 "Setup to use port 5
110 PRINT "L" 'Off hook

120 DT%(1)=3 'Start dial tone delay

130 IF DT%(1)<0 GOTO 130 "Wait for dial tone

200 PRINT "5551234" 'Dial the number

210 DT%(1)=2 'Start dialing timer

220 IF DT%(1)<>0 GOTO 220 'Wait

210 RETURN

6.F HOOKUP RUGID TO A RADIO

RUGID computers are specifically designed for easy integration with standard telemetry radios.
Figures 6.F.1, 6.F.2, and 6.F.3 present the connections to a standard Motorola radio. Only six wires, audio
in, audio out, and transmitter key are required to accomplish the connection.

106

15VDC POWER SUPPLY

12 V BATTERY

oit 5 COMMUNICATIONS ¢ @ nca
mz @ & o8
(1] & nos
Di4 & ner
bis PROTECTED @ ¢7
DI @) No7
o7 FIELD @} NeE
e 2! s
g BOARD 2| nos
Do & NS
COM & s
COM & o5
> DIGITAL IN DGTALOUT &
o1 2| NC4
mi2 2| ¢4
D13 & nos
M4 @ nca
15 @ ca
D16 @| noa
cOM @ nez
COM 2| o2
com | & @ o2
com [@ 2| ne
coM |@ @| o1
oom (2] L @ not
|
P
mic’
s e E
COM £
coM
coM
E:v“ LOOP SUPPLY =S
2BV e
28V
28V ANALOG IN
; A~ . g
[fecooeoo0020)
 VERMNE
AT A2 A3 A4 AS AG AT AR AS AT0KT1C0M

FIGURE 6.F.1 TYPICAL RUG6 RADIO CONNECTION

107

BATTERY
12 VDG

-4 I -4 -t -4
ooy E_._-._..__u_,.ﬂ_ 1NX

i} ANB{IO93S FEZIL

mm 3 9 1010 la 1o 1a ia 1a 1o mL 00 €00 200 100 | [n _L__ m
_DD _| 0000505000 _@@@@@@@@@@@@:@@@@@@@@ SIS
zZezsM yez) Jo0RHO0
Enlnkﬂ:ﬂ-i.!u Ay =11 ﬂﬂﬁﬁﬁﬂﬁﬁ%nﬁéﬂﬂzﬁﬁg D@D
sayEg spnduj reulig
--- Q4v04 29Ny -

FIGURE 6.F.2 TYPICAL RUG7 RADIO CONNECTION

108

RNET RADIO 15VDC POWER SUPPLY
s 12 V BATTERY
1
Bam 115V + -
BMD
500050
| L—115
L=
1
A = T RGHD
ddeedodadboro) I
N e’
COMMUNICATIONS * [@] pig
@| o7
@| Dig
@| Dis
@| o4
DIGITAL INPUTS ¢ Eg
t Rain Gauge
RUGS comr—f———
PROTECTED coMm
FIELD CoM
BOARD ~ 2] COM
F ™ Em
) o4
——
@ Nea
@| ca
RELAYOUTPUTS ¢ L | @] wos
@| ne2
@| c2
—
@] Nei
& o1
o S—]
" [,
@
MC- o
o SPEECH LD =
5!'!:_52:l E
coMm @ £
com |@
com |@
g 2 7 wooe suppty e
v @
1 @ i b
1o @) ANALOG IN :
& N Y
EEEEEAEEREE

A1 A2 A3 A A5 AG AT AB AS ATATICOM

FIGURE 6.F.3 TYPICAL RUGS RADIO CONNECTION

109

6.G HOOKUP EXTERNAL MUX/AMPLIFIER

For lease line or customer owned telephone applications, the MUX/amplifier board can be attached
to the RUGID 4-wire channel to boost transmit gain by approximately a factor of 10. When a RUGID
master unit needs to interface with multiple leased lines, one MUX/amplifier board can be installed for each
line to provide amplification and impedance matching. Figure 6.G presents the proper MUX/amplifier

board hookup to a RUGH.

15VDC POWER SUPPLY
el 12 V BATTERY
) B - M
’ -
2
‘__II
—t]

000000 ©OO

2

T RGND

@ =151

N ——
o [@ D COMMUNICATIONS - NGB
D2 @ ca
o3 |@ N0
o4 @ NCT
pis |@ PROTECTED @| cr
ol @ 2| no7
oy |@ FIELD]
oE @ 2| s
e @ BOARD NOS
nrin 1A MRS

FIGURE 6.G MUX/AMP HOOKUP TO RUG6

110

SECTION 7

1.0 TROUBLESHOOTING

To troubleshoot a RUGID computer to the component level requires test equipment and knowledge
of the design that are beyond the capability of most users, Outright failures should be referred to the
manufacturer for diagnosis and repair. However, there are some conditions that may be user correctable.
These are identified in this section.

7.1 PROGRAM IS LOST ON POWER OUTAGE

Normally, the onboard Lithium battery will provide power to the memory and real time clock
during outages. Proceed as follows:

1. Enter a small program in memory and start it running, Note the time on the real time clock.

2. Remove power for 30 seconds then reapply it.

3. If the program is lost and the real time clock time is wrong, an excessive current drain is occurring in the
battery load or the battery is dead or missing. Return the unit to the manufacturer for repair.

4. If the program is intact, remove power for one hour then reapply it.

3. If the program is lost, replace the Lithium battery. If that does not cure the problem, return the unit to the
manufacturer for repair.

7.2 ANALOG INPUTS ARE INACCURATE

Inaccurate analog measurements are often caused by noise in the wiring bringing in the analog
measurement. Observing the following practices will eliminate most noise problems:

1. Use shielded twisted pair wires.

2. Ground the shield only at the RUGID computer COM terminal.

3. Use sufficiently large wire to minimize voltage drop.

4. Do not run analog wiring parallel to wires carrying AC or switched signals.

5. Use large enough power supplies to handle worst case current and voltage requirements.

Make sure that during calibration the values applied to the transducer do not exceed the transducer's linear
range, and that they do not exceed the linear range of any signal converters or other instruments using the
same measurement. Evidence of a nonlinearity during calibration is accurate calibration near one end of the
active range and increasing error as the other end is approached.

Ground loops are an additional source of error. Make sure that current flowing to or from another
device does not have a path to flow through an analog signal wire. Note that the RUGID main board analog
inputs have common analog returns. In other words, they are not isolated from each other. They must
therefore be the last measurements in current loops before the loops are returned to the power supply
negative terminal if more than one loop is used.

111

7.3 UNIT BOOTS TO MONITOR INSTEAD OF BASIC PROGRAM

Failure of the unit to boot to the same mode that existed before a power outage is due either to low
battery voltage supplying power to the RAM that contains the reset vectors and mode specifier, or the
executing program is writing erroneous data into the vector area. Check that your program is not writing to
the system areas designated as reserved in the memory map, Appendix D. This can also be caused by the
unit being hit by a transient due to lightning or back EMF from a starter or solenoid. Replacing the onboard
Lithium battery will correct low voltage to the RAM. Applying snubbers to inductive loads such as starters
and solenoids will attenuate back EMF transients from those devices. If these actions do not correct the
problem, return the unit to the factory for repair.

7.4 CLOCK WILL NOT KEEP ACCURATE TIME

The real time clock uses a 32 Khz crystal as its time base. It should provide .005% rate accuracy.
If the rate appears to have greater drift, return the unit to the factory for repair.

7.5 UNIT APPEARS TOTALLY INOPERATIVE

This can be caused by a failure in the unit or a blown fuse. If replacing the fuse does not bring the
unit into operation, return it to the factory for repair. Be sure to return the wall transformer if it has one.

This symptom can also occur if the serial port setup parameters do not match those of the terminal
or computer you are using to communicate with the unit, and the unit has no display to indicate activity. If
it is possible that the baud rate, parity selection, or other serial port selection could be different from that of
your terminal or computer, you can cause RUGID to install the default port setup parameters of 9600 baud
(port 1), 8 bit word, 1 stop bit, and disabled parity by momentarily grounding the non-maskable interrupt
pin, pin 6 on the microprocessor. Port 2 will initialize to 300 baud. To do this, you must power the main
board up and momentarily connect pin 6 to pin 1 on integrated circuit R65C02P2. On RUG6 and RUGS
units, this can be done without removing the CPU board (the one nearest the front flanged plate, often with
the LCD mounted on it). Instead, remove the steel case top cover and locate the white circle on the circuit
board next to the power connection, a brown two pin connector. In the center of the white circle are two
tinned feed through pads. With power applied to the unit, momentarily short the two pads together. This
will install the default baud rate, etc.

7.6 DISPLAY IS HARD TO READ

The LCD display has a limited viewing angle and contrast ratio due to the multiplexing technique
used in accessing the liquid crystal material. Contrast adjustment is accomplished by adjusting the contents
of location $0216 (534). If your unit has a keyboard, you can adjust the contrast by simultaneously holding
down the decimal point and "8" keys or the decimal point and "9" keys. There will be several seconds delay
between the adjustment and a change in the display due to low pass filtering. On RUGT', the display is
temperature compensated using an onboard temperature transducer. To re-initialize the compensation, clear
the RUGT unit type designator bits in the voted memory (Appendix D), install DIAGNOS7.CMP and run it.
This will restore the temperature compensation. If this doesn't work, return the unit for repair.

112

SECTION 8

113

8.1.1 RUG6 and 8 MAIN BOARD COMPONENT ARRANGEMENT

0
Jﬂ:j
% :
o=
i piTo7320

l%

COPYRIGHT 1891

E
_"“(1
%.tﬂﬂ

. 58
(I.,_.
e
S ALYt = e
—

cl e

L

R —
2RECIB

FIGURE 8.1 MAIN BOARD COMPONENT ARRANGEMENT

114

8.1.2 MAIN BOARD BUS CONNECTOR PINOUT

8.1.1.1 JI Main Bus (Same for all boards)

FUNCTION

877X speech enable
I0OEN, I/O enable
Al

Mo connection
A2

Mo connection
Ab

AD

AlD

+5VDC

+5VDC

+3VDC

AT

IRQ

A3

CE2, 1.8 Mhz
D7

D5

03

D1

8.1.1.2 J4 PRINTER, R5232, R5422

FUNCTION

Strobe invert

D1

D2

D3

D4

D5

D6

D7

D8

ACK invert

BUSY from printer
PE from printer
GND

RS232 receive data
RS5232 data set ready
Mo connection
RS422 +data

115

oa on B kD

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

PIN

FUNCTION

GND

GND

GND

GND

GND

+5.7 VDC

-10 VDC

A3

Al

A9

Unreg. in

Unreg. in

Unreg. in

Ad

R'W

RST

D6

D4

D2

D0
FUNCTION

No connection
Error from printer
Mo connection

Mo connection
GND

GND

GND

GND

GND

GND

GND

GND

RS232 transmit data
R5232 request to send
No connection
RS232 carrier detect
RS422 -data

MAIN BOARD
15 PIN NUMBER

OO =) O Wh b L b e

8.1.1.3 J5 Main Board Field 1/O Connection

FIELD BOARD
PIN NUMBER

Ti1-1

T1-3

T1-5

T1-7

T1-9

T1-11

T2-1

T2-3

T2-5

T2-7

T2-9
T1-2,4,6,8,10,12
T2-2,4,6,8,10,12
T3-9,10,11,12
T4-9,10,11,12

T3-1 isolated
T3-2 isolated
T3-3 isolated
T3-4 isolated
T3-5 isolated
T3-6 isolated
T3-7 isolated
T3-8 isolated
T4-1 isolated
T4-2 isolated
T4-3 isolated
T4-4 isolated
T4-5 isolated
T4-6 isolated
T4-7 isolated
T4-8 isolated

116

FUNCTION

Analog input 1
Analog input 2
Analog input 3
Analog input 4
Analog input 5
Analog input 6
Analog input 7
Analog input 8
Analog input 9
Analog input 10
Analog input 11
Analog common
Analog common
GND

GND

GND
Unregulated +12
Relay #1 driver
Relay #2 driver
Relay #3 driver
Relay #4 driver
Relay #5 driver
Relay #6 driver
Relay #7 driver
Relay #8 driver
Digital input #1
Digital input #2
Digital input #3
Digital input #4
Digital input #5
Digital input #6
Digital input #7
Digital input #8
Digital input #9
Digital input #10
Digital input #11
Digital input #12
Digital input #13
Digital input #14
Digital input #15
Digital input #16

8.2 RAM BANK COMPONENT ARRANGEMENT

® Mgz Eﬂmﬁo%
sTk= 20 : B%]
B
8 YB_®__]
e -l n
B]zh 8
Eui_ﬁ I
- sp F
5 h 3 -
u 3
4 P s ;u -
C 2
_15:. . E:l 5
=|]E 0 -
T 1p °
s 5
SF U
g B T::I g of ’
%Iims:l E: o
E 5
=0 0
2 ::5: 3 of :
4 0r
2 Db . i :
%1 [0
5 o« | 5
s B b s g
B - —:

FIGURE 8.2 RAM BANK COMPONENT ARRANGEMENT

117

8.3 SPEECH SYNTHESIZER COMPONENT ARRANGEMENT

1 8 EEE
r_’l_E J
= e =
;I sjfnls
o a
m] ™= ™ © -
['. L S i i zln o
~_ 1 E| | &| | & g
ol
E'|-_'||||

"
Bl b2
[TF]

B
urs

B

(m] [m] L [m] [l
2 g 300 8 s M =
n M (m |

s ¥ S 3)

FIGURE 8.3 SPEECH SYNTHESIZER COMPONENT ARRANGEMENT

118

8.4 RUG6 MODEM BOARD

$$§ -leg: = D
i E =~
Wes— ° 0 P
I 15[]::l 8
L 2 ﬁl]-: 5 2
E==—] .
= m: E
2 | E
1] —
: Eiamf b X
! Eé s {
[' =1 2 ;
—I]E—] s P 5
s _ o tpa-.:
s E" et ?[F.:‘:
> J:E——I"H:' 3 =
[HE %E':' = _?E’
d " loe=s 24 Z
Al y g
=12 g% f\
£ I i [H .
" W=
- g,.,__a__,
l| - 1K | E—=]E,J
ST B e

FIGURE 8.4.1 MODEM + DIGITAL I'O COMPONENT ARRANGEMENT

119

8.4.1 RUG6 MODEM + DIGITAL I/O CONNECTOR PINOUT

£.4.1.1 J1 Analog Communications Pinout

Applies to PN 093001

MODEM BRD. PROTECED FIELD FUNCTION

PIN NUMBER BOARD PIN

1 J2-1 Telephone 2 wire +

2 J2-2 Telephone 2 wire -

3 J2-3 Radio/telephone 4 wire receive +
4 12-4 Radio/telephone 4 wire receive -
5 J2-5 Radio/telephone 4 wire xmit +

] J2-6 Radio/telephone 4 wire xmit -

7 J2-7 GND

8 12-8 Radio transmitter keyer

9-16 J2 59-16 No connection

17 1217 Speech board mic input

18 J218 Speech board ground

19 219 Speech board audio output

20 3220 Speech board ground

120

8.4.1.2]5 Relay Driver Qutputs

Applies to PN 093001

MODEM BRD.
PIN NUMBER

B =] O LA e L B e

e T T O e e ek
coddaRbUN LSS GG ERR E R e E SR RO e

EXPAN. FIELD
BOARD PIN

Ti-1
Tl
T13
T1-4
T1-5
T1-6
T1-7
T1-8
T1-9
T1-10
Ti-11
T1-12
T2-1
T2-2
T2-3
T2-4
T2-5
T2-6
T2-7
T2-8
T2-9
T2-10
T2-11
T2-12
T3-1
T3-2
T3-3
T34
T3-5
T3-6
T3-7
T3-8
T3-9
T4-1
T3-10
T4-2
T3-11
T4-3
T3-12
T4-4

121

FUNCTION

Relay driver #1

Relay driver #2

Relay driver #3

Relay driver #4

Relay driver #5

Relay driver #6

Relay driver #7

Relay driver #8

Relay driver #9

Relay driver #10
Relay driver #11
Relay driver #12
Relay driver #13
Relay driver #14
Relay driver #15
Relay driver #16
Relay driver #17
Relay driver #18
Relay driver #19
Relay driver #20
Relay driver #21
Relay driver #22
Relay driver #23
Relay driver #24
Relay driver #25
Relay driver #26
Relay driver #27
Relay driver #28
Relay driver #29
Relay driver #30
Relay driver #31
Relay driver #32

Channel 1-8 EMF protect

GND

Channel %-16 EMF protect

GND

Channel 17-24 EMF protect

GND

Channel 25-32 EMF protect

GND

8.4.1.3 J6 Digital Input Expansion Pinout

Applies to PN 093001 only

MODEM BOARD EXPAN. FIELD FUNCTION
PIN NUMBER BOARD PIN

Jo-1 Tl-1 Digital input #1
Ja-2 Ti-2 Digital input #2
Ja-3 Ti-3 Dhgital input #3
Jo-4 Ti-4 Digital input #4
J6-5 Ti-5 Digital input #5
J6-6 TI1-6 Digital input #6
Je-7 TI-7 Digital input #7
Je-8 Tl-8 Digital input #8
J6-9 T1-9 Digital input #9
Jo-10 T1-10 Digital input #10
J6-11 TI-11 Digital input #11
J6-12 Tl-12 Digital input #12
Je-13 T2-1 Digital input #13
Jo-14 T2-2 Digital input #14
J6-15 T2-3 Digital input #15
Je-16 T2-4 Digital input #16
I6-17 T2-5 Digital input #17
Jo-18 T2-6 Digital input #18
J6-19 T2-7 Digital input #19
Ja-20 T2-8 Digital input #20
Je-21 T2-9 Digital input #21
J6-22 T2-10 Digital input #22
J6-23 T2-11 Digital input #23
J6-24 T2-12 Digital input #24
J6-25 T3-1 Digital input #25
J6-26 T3-2 Digital input #26
Ja-27 T3-3 Digital input #27
J6-28 T3-4 Digital input #28
16-29 T35 Digital input #29
16-30 T3-6 Digital input #30
Jo-31 T3-7 Digital input #31
Ja-32 T3-8 Digital input #32
Ja-33 T3-9 +5VDC

J6-34 Td-1 GND

J6-35 T3-10 +5VDC

J6-36 T4-2 GND

16-37 T3-11 Unreg, 12VDC
J6-38 Ta-3 GND

J6-39 Ta-4 GND

122

8.5 ANALOG I/0O EXPANSION

51 o
l:l Q
U=
g17
"o
N

0

O

n
¥ |

err
C
1
DS

mzulﬂ = _df
i

= e
o h
o
]
=g
1

o
P 4
Ul &= 51
Rl
=ik
o= i
o ==l
>|;|EIEI o o .?2
=
B#EEEEE
= Ba = ||
E“EFEEEH ;
ﬁu o
s I;EI=5=“=D='|E—'
5| (BB EEE||H e D
& = LE

FIGURE 8.5 ANALOG I/O EXPANSION BOARD LAYOUT

123

8.6 EXTERNAL FIELD TERMINAL BOARDS
8.6.1 RUG6 PROTECTED FIELD BOARD

O
og
g
'S

SESEBEEER

J5 RS 232

s o u

FIGURE 8.6.1 PROTECTED FIELD BOARD COMPONENT ARRANGEMENT

124

8.6.2 VO EXPANSION TERMINAL BOARD (AFB, DFB)

= L Dl/DO
GNDE" tGU}EMF
GND | @]+ «| & |U/EMF
GND e- *| @ |+5/EMF
GND 9- *| @ |+5/EMF
GND | |» +|&|CH 32
GND 9. «|&| CH 31
GND | ©|- || CH 30
GND | D]+ «|&|CH 29
GND ag -e CH 28
GND | B|= |@|CH 27
GND @. «|@&|CH 26
GNDE' -Q CH 215
e e Q[<[S] CH 24
U «|@|CH 23
C" -|@|CH 22
. «|@|CH 21
rg CH 28
™ CH 19
WOl o[| cH 12
BOARD tle CH 17
'6 CHH
g
- CH 14
. CH 13
. CH 12
o P «|@|CH 11
Q c.e CH 10
«|G|CHY
*|@|CHS
= |@|CH7T
RECIB {55
«|@|CHS
COMPUTER 19 Eﬁ;
RAMCHO CORDOVA, CA *|©
-B CH 2
e -|@|CH 1
PN: 880330 SN:

FIGURE 8.6,2 EXPANSION FIELD BOARD LAYOUT (AFB, DFB)

125

8.6.3 RELAY FIELD BOARD (RFB)

B

8888588

88888 ¢

90 20
T s a4

JQMW

5 55 58 5
3+ g+ 9+ oF

‘NS 0L0Z60 *Nd

431NdW0D aidnNy
0661 LHOIMALOO

FIGURE 8.6.3 RELAY FIELD BOARD (RFB)

126

8.6.4 OPTICALLY ISOLATED FIELD BOARD (OFB)

J+]

]
8
Q

(3]
3
0

]

2
g
@]

]
]
8]

A= RIC =L Bt ™
1]
=213
0000

|

FIGURE 8.6.4 OPTICALLY ISOLATED FIELD BOARD LAYOUT

127

8.7 RUGS BOARD ARRANGEMENTS
8.7.1 RUGS COMMUNICATIONS BOARD COMPONENT ARRANGEMENT (COM)

-

EE‘EF'E&DEE

Os

=il | L I J
{os 102 el
< 3 E e
o Y
i s &
=0 flheall
) :g&g =P
b e .
L 2 E &

Bl =
® F i

:%% o
] g =

ﬂ ﬂgﬁﬁgﬁp
L] 3
iDEEﬂ] = i

FIGURE 8.7.1 RUGS COMMUNICATIONS BOARD COMPONENT ARRANGEMENT

128

|

8.7.2 RUGS LOW POWER FIELD BOARD COMPONENT ARRANGEMENT (LFB)

BATT, Exr 5w RECY Hmiﬂwﬁ
®os

=

E{J CEEEEREFHESE

FIGURE 8.7.2 RUGE LOW POWER FIELD BOARD

129

8.8 RUG7 BOARD COMPONENT ARRANGEMENT

_ __NEEJ “Egjﬁﬁﬁ.ﬂﬁs
. I bd

ﬂ@%

win
L)
* L=
B
"

m ﬁwnn,n..vawm,ﬁ,_uY.n.ﬂ.. n.ﬂm“n

= o E._Hw%ﬁ!l]ﬂﬁu o
5 ? o e, Luw_uﬁ_ljﬂ &mmm

"

_ Joen_san| 3 i .r.wo_l__,‘_m ...
="~
: wﬁ_.,ﬂm.m,. .=
S—]) s
mmw ._H_.Eﬂm, Hﬂ #in :] s-u ;
 f— =

OMPONENT ARRANGEMENT

BOARDC

8.8 RUG7

8.9 MUX BOARD COMPONENT ARRANGEMENT

T
s)
[CORTw aaf
i I (=T el
& B T g
: = |G-
—] EO{:}E

B Q Q5 o B4
5, Q " Higg
2 i @+

M

b S
e
| ;
RNz

€1

ﬁfjm

FIGURE 8.9 MUX BOARD COMPONENT ARRANGEMENT

131

B.A RADAR GUN/PROTOTYPING BOARD COMPONENT ARRANGEMENT

L]
le

2| @
€
O -

a4

crr

A
wH, (=8 =_af

F—“l\n.

e
(-

P 198030 SN:

i

¥4
-

‘@ C=glc=al
E
g

RUGID COMPUTER
L
|
L
L

.

FIGURE 8.A RADAR GUN/PROTOTYPING BOARD COMPONENT ARRANGEMENT

132

SECTION 9

9.0 USEFUL INFORMATION
9.1 ASCII CHARACTER SET
Char Dec Hex Char Dec
NUL O 0 aPC 32
S0H 1 1 ! 33
aTXx 2 2 " 34
ETX 3 3 # 35
EOT 4 4 5 36
ENQ 5 5 Yo 37
ACK 6 6 & 38
BEL 7 7 ! 3q
BS 8 8 [40
HT 9 9 } 41
LF 10 A L 42
YT 11 B + 43
FF 12 & : 44
CR 13 D - 45
S0 14 E ; 46
&l 15 F ! 47
DLE 16 10 L] 48
DC1 17 11 1 49
DC2 18 12 2 50
DC3 19 13 3 51
DC4 20 14 4 52
NAK 21 15 5 53
SYN 22 16 i 54
ETBE 23 17 7 55
CAN 24 18 8 56
EM 25 19 9 57
SUB 26 1A : 58
ESC 27 1B H 59
FSs 28 1C < a6l
Gs 29 1D = 6l
RS 30 lE > 62
us 31 IF ? a3

LF =Line Feed
FF = Form Feed

Hex
20
21

23

F
26
27
28
29
24
2B
2C
2D
2E
2F
30
31

32
33

34
35

36
37
38
19
3A
iB
3C
iD
3E
3F

CR = Carriage Return

ESC = Escape

§
g

P TTNMXECCHNAOTOZICANTZOTHOOT Q@ |

=3 VI="K
FF="L. CR="M

133

65

67
68
69
70
71
72
73
74
75
76
T
T8
79

81
83
86
87
88
89
91
92
93

95

Hex
40
41
42
43

45
46
47
48
49
44
4B
4C
4D
4E
4F
50
31
52
53

55

57
58
39
5A
5B
5C
5D
SE
5F

| @
B

‘-\-'_-‘---H'-'E!HE{H”Wqﬂ'ﬂﬂﬂg-rh'-'ﬁmﬂﬂﬁ.ﬁﬂﬂ—a

ALY

m——

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
1132
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex
&0
61
62
63

65

67
68
69
BA
6B
6C
6D
6E
6F
70
71

73
74
75
76
17
18
79
TA
7B
7C
m
TE
TF

Graphics mode only:
CHARACTER DEC HEX

Up arrow 128 $80
Diown arrow 129 581

| 138 $8A
I 139 $8B
ll 140 $8C
i 141 $8D
111} 142 S8E
[l 143 $8F
(TN 144 590
9.2 ERROR MESSAGES

MNext Without For

Each FOR instruction must be paired with a NEXT instruction which establishes the end of the instructions
to be executed in the loop. You have probably forgotten to include the NEXT or have misspelled it.

Syntax

The interpreter has encountered an instruction with incorrect punctuation, an illegal character, a missing
parentheses, etc.

Return Without GOSUB

A RETURN has been encountered before a GOSUB was executed. Make sure that your program has not
"fallen through" into a subroutine,

Out of Data

A READ instruction has run out of data, Possibly a RESTORE instruction has been forgotien, or all the
data to be read has not been accounted for,

Function Call Parameter

A missing or extra parameter exists in a function call; or one of the wrong type exists, This usually occurs
as a result of one of the following:

1. Negative or large subscript

2. Negative or zero argument for LOG function

3. Negative argument for SOR function

4. A USR call before address establishment

5. An improper argument exists in a call to MID$, RIGHTS, LEFTS, WAIT, PEEK, POKE, ON..GOTO,

SPC, or TAB.
Overflow
A mathematical expression has exceeded the interpreter's capacity to represent the resuit. This most

commonly results from a divide by zero. When divisions are necessary, you must be certain to test in
advance that the divisor is not zero.

134

Out of Memory

Attempting to add a statement or variable has resulted in exhaustion of the memory in either the volatile or
nonvolatile memory area. If this error occurred when entering a program statement, nonvolatile RAM is
full. If it occurred during execution, the first character of the variable being stored indicates the RAM area
that is full. You will have to compress statements, reuse variables, or use integer arrays to reduce memory
occupancy. This error can also occur if the stack overflows due to nesting FOR..NEXT or GOSUB
statements too deeply, or nesting parenthetical expressions.

Undefined Statement

An attempt was made to GOTO, GOSUB or THEN to a statement number that does not exist.

Invalid Subscript

An attempt was made to access an array entry larger than was dimensioned, or the wrong number of
subscripts was used. This often occurs when an array is referenced without being dimensioned,

Pointer Error

An array was dimensioned twice. This often occurs after BASIC dimensions an array automatically when
referenced, and then encounters the DIM command for that array.

Attempted Divide by Zero

An attempt was made to divide by zero. You should check divisors before attempting division.
Illegal Direct Command

Certain commands such as DEF, GET, or INFUT cannot be executed in the command mode.
Data Type Mismatch

The left and right sides of an expression have a numeric/string mismatch, or a function is supplied with the
wrong data type.

Long String

An attempt was made to create a siring whose length exceeds 255 characters.

Complex String

A string expression is too complex. You must break the expression into two or more shorter expressions.
Continue Error

An attempt was made to continue a program when it has been altered, an error has occurred, or the program
does not exist.

Undefined Function

An attemnpt was made to execute a user function that is not vet defined. Check the spelling of the function
definition ar the call.

135

9.3 WARRANTY

RUGID COMPUTER WARRANTS THAT EQUIPMENT MANUFACTURED AND SOLD BY US IS
FREE FROM DEFECTS IN MATERIAL AND WORKMANSHIP, UNDER THIS WARRANTY, OUR
OBLIGATION IS LIMITED TO REPAIRING OR REPLACING, AT OUR OPTION, ANY EQUIPMENT
OR PARTS RETURNED SHIPPING PREPAID AND PROPERLY PACKED TO OUR PLANT AND
PROVING TO BE DEFECTIVE BY OUR INSPECTION WITHIN ONE YEAR AFTER SALE TO THE
ORIGINAL PURCHASER. THIS WARRANTY SHALL NOT APPLY TO EQUIPMENT OR PARTS
THEREQF WHICH ARE NORMALLY CONSUMED IN OPERATION, OR TO ANY EQUIPMENT
WHICH SHALL HAVE BEEN REPAIRED OR ALTERED IN ANY WAY OUTSIDE OUR PLANT, SO
AS TO, IN THE JUDGEMENT OF RUGID COMPUTER, AFFECT ITS STABILITY, ACCURACY, OR
RELIABILITY, NOR WHICH HAS BEEN OPERATED IN A MANNER OR ENVIRONMENT
EXCEEDING ITS SPECIFICATIONS, NOR WHICH HAS BEEN DAMAGED, ALTERED, DEFACED,
OR HAS HAD ITS SERIAL NUMBER REMOVED. UNDER NO CIRCUMSTANCES SHALL RUGID
COMPUTER BE LIABLE FOR ANY LOSS OR DAMAGE, DIRECT, INCIDENTAL OR
CONSEQUENTIAL, ARISING OUT OF THE USE, MISUSE, OR INABILITY TO USE, THIS
PRODUCT. THE LIABILITY OF RUGID COMPUTER SHALL NOT EXCEED THE ORIGINAL
PURCHASE PRICE OF THIS PRODUCT.

9.4 RETURN/REPAIR POLICY

Specific warranty provisions are stated in the warranty section above. Under no circumstances are
products returnable for credit. If a product is found to have failed, it must be returned to the factory for
repair or replacement. The determination of whether to repair or replace the product is made by us after a
period of testing. If it cannot be brought up to complete operation with full certainty, it will be replaced.
When repaired under warranty, we will return the repaired product using the same freight class as it was
received, no charge. We will make every effort to ship within 24 hours of receipt. The determination of
whether a product’s repair or replacement is covered under warranty will also be made by us. We give the
benefit of any doubt to the customer in this determination. However, if there is any indication of physical
damage, alteration, or misapplication of the product, then the repair will not be covered by the warranty.

It is in your best interest to accurately assess and report the circumstances of a failure. One of the
maost difficult determinations to make is whether a product has suffered overvoltage stress in the field. Ifit
has, the product can fail a month after being repaired and declared operational due to failure of a component
that was stressed but did not reveal itself during testing. Also, any failure related information you can give
us along with the product can reduce the time it takes to find the defective components. Therefore, it could
save you money.

136

9.5 MEMORY MAP

The following list presents the RUGID memory organization. Addresses are given in hexidecimal
notation.

ADDRESS FUNCTION

$0000-0112 Scratchpad

$0113-01FF Stack

$0200-0211 More scratchpad

50212-0250 Background software scratchpad

$0251-02A3 Modem port output buffer

$02A4-02F6 Terminal port output buffer

$02F7-0349 Printer output buffer

B034A-03D2 Background scratchpad

$03D3-0425 Modem port receive buffer

$0426-0479 Terminal port receive buffer

$047A-04A0 Scratchpad

$04A1-04C2 Pointers to preassigned arrays

$04C3-04DA Scratchpad

$04DB-1EFF BASIC variable storage area

$1F00-1FFF Reserved area for user data
CAL.LIB uses this area to store calibration constants.

$2000-7EFF BASIC program

$7F00-TF2F Voted critical data

$7F30-7TFTF Reserved system area

$7FB0-TFFF Reserved area for user

$8000-80FF RAM bank 256 byte window

$8100-81FF RAM bank select addresses

$8200-82FF Analog /'O select addresses

£8300-85FF Reserved 170 select addresses

$8600-86FF Digital 170 select addresses

$8700-87FF Main board 1/O select addresses
($877X=Speech processor)

137

9.6 VOTED MEMORY CONTENTS

Memory locations $7F00 through 7FOF contain critical parameters that govern unit operation. The
assignments of these locations are presented below along with the default values installed when the unit is
newly initialized. The contents of these locations are replicated two more times in locations $7F 10 through
$7F IF and $7F20 through $7F2F for storage redundancy. Upon boot up, the unit compares the three copies
of this data and, if a single byte mismatch is discovered, will make the mismatching byte match that of the

other two. If more than one parameter is found to be in error, the unit will install the defaults identified
below. These defaults will also be installed in the event of a non maskable interrupt, which occurs when

pins 1 and 6 on the mocroprocessor (G65C02P2) are shorted together.

Address=$7F00 Default=522 Purpose=mode setting: $22=Monitor, $43=BASIC, $8C=Command
Address=57F01 Default=501 Purpose=Modem UART command:
BYIE 7 | i [] [3 [3] D
FUNCT FARITY. FCH, TX CONTROL. ROV RO, DTE
X X0 Moparity D=0K 0 0 IRQ off, RTS on, TX off O=an =10 rev
001 Odd I=Echo 0 1 IR} on, RTS off, TX an | =off T=rew ok
011 Even 1 0 IRQoff, RTS off, TX on
101 TX mark | 1 IRQ off, RTS off, TX bk
111 TXspace
Address=$7F02 Default=518 Purpose=Modem UART control:
BYTE 7 [k] 4 3 |] 1 | [
FUNCT ST0OP BITS; mwlfﬁn T : ROV CLE: | BALD RATE:
a=1 00=8 O=Ext 0000=Ext, 1000= 1200
1=2 01=7 I=lInt 000 =50 1001= 1600
1 0=6 O010=75 1010=2400
11=5 0011=110 1011 =3600
0100=134 1100=4800
D10} =150 1101 =T7200
0110=30 1110= 5600
0111=600 111 1=19.200
Address=87F03 Default=500 Purpose=Unit address for CRC communications
Address=37F04 Defanlt=501 Purpose=Terminal UART command, see STFO01
BYIE i T 3 | 5 '} 1 | ;] [0
FUNCT | PARITY: FCHO: | TX CONIROL: RO L DR
X X0 Nopanty 0=0K 0 0 IR, RTS an, TX off O=an D=tir rev
001 Odd 1=Echa 0 1 TRQon, RTS off, TX on 1=aff I=rev ok
011 Ewven 1 0 IRQocff, RTS off, TX on
101 TX mark 1 1 IRQoff, RTS off, TX bk
111 TX space

133

Address=87F05 Default=%1E

Purpose=Terminal UART control, see $7F02

Address=$7F08,9 Default=set by EPROM

Purpose=Reset vector

[BYTE 7 [5 4 3 T 1 | i 0
(FUNCT | STOP BITS: LENGIH. RCVCLK: | BAUD RATE.
=1 00=38 [Ext 0000=Ex, 1 600~ 1200
1=2 01=7 I=Ent 000 1=50 1001 = 1800
10=6 00 E0=75 1010=2400
1 1=5 Bo11=110 101 1 =360
0100=135 1100= 4800
0101=150 1101 = 7200
0110=300 1110=9600
011 1=600 1111=19.200
Address=8$7F06,7Default=set by EFROM Purpose=IRQ interrupt vector

Address=8TF0A Default=$03 Purpose=Rings to answer, tone use:
BYIE 7 6 |] |] 3 2 | 1 T 0
FUNCT [Z121037202; | TONE USE: RINGS T ANSWER,
0=103 000 = Apswer Runge=0 to 15
=202 001 = Onginate Sets rings to anawer by background SW
© 10 = High tones
011 =Low tones
100 = Autoset

Address=8$TFOB Default=%$00

Purpose=CRC communications setup:

BYIE T % G | 3) []
FUNCT DIAG- Spare DIAGHOSTIC FORT TWIRES Spae MODEM TLM MODE, |
NOST: SWIRE
{-oif 00=Len 0=2W 0 = RUGID
1=on 0 1 = Terminal 1-4W 01 -CRC
I € = Modem 10=ASCIH
I 1=PRN
Address=37F0C Default=808 Purpose=Modem delays:
BY 7 I 3 3 | [] | 2 T [|]
& Nulls Transmil delay in Hiths of a second
Address=87F0D Default=800 Purpose=Unit type:
BYTE | 7 | [| 5 | 4 | 3 [2 1 | (1]
FUNCT UNIT TYPE:
0 = RUGE
D 1=RUGT
| 0= RUGS
Address=87F0E Default=500 Purpose=Spare
Address=87F0F Default=$20 Purpose=Misc. flags:
BYIE 7 3 H | r 3 z |]
FUNCT TD 4053 TIC 153 control on baat up Enable Port | mode | Printer wait
comtral on Mudbus on
bt RAM bank
O=std O=A%CH O=for-evar
1=RAM I=MODBU | 1-2.5 sec
hank 5

129

10.5
8 X 40 CHARACTER ENTER
GRAPHIC LCD CLEAR 5.0
1[4
ol1][2][3]|4][5]|e]l7)(8][8].][¥
NOTE: All dimensions in Inchas
* Depth of 5-slot casa is 5.75 inchas
Depth of B-slot case is 8.0625 inches

Figure A.1 RUG6/8 Unit Dimensions

141

-

o5
=l

8 X 40 CHARACTER ENTER

4 GRAPHIC BACKLIT LCD CLEAR
| A

o][1][2][3]alls]{e]l7](8][9]L)Ly

[——
[TBEER] | oy uputs Yorm Opee 1234 I OO DTy mm

pr————————, 1234 AR 1.25
Lﬁf@@@@ on @@m EEEEEEEEERER :m&aamasaam@@] En:rn
Do IBHNIII:HIIIIKEEI WMT RCY TN A M MM ADD l
1234 80 TaNY g %= %= T2 24 &=
1.. 10.8125

Figure A.2 RUG7 Unit Dimensions

142

8 X 40 CHARACTER ELED
GRAPHIC BACKLIT LED [cEAR]

[][4]
OHEEEENDEEDR

FREEDNER33EY ogvEnnuwanw
. &

T [
EiEa AR "

ATLSTIIT

L] — EEREETNT LD R n e n b

Figure A.3 RUGG 14 by 16 Backpan Mount Arrangement

143

14.75 In.

=

171n. p
R
O O
RNET -LI POWER SUPPLY
RADIO]
- amulll
g 171n.
8 X 40 CHARACTER [ENTER | :
GRAPHIC BACKLIT LCD -
g =B i
EEEEREEEEIELN] g T
- == I@
O O L

Figure A.4 RUG6 17 by 17 Backpan Mount Arrangement

144

» 129° g
o) S {
! Iln
8 X 40 CHARACTER L@;—I
’ GRAPHIC BACKLIT LCD
[-][3]
L] RIEIA] B E E H 14.75"
RNET
POWER SUPPLY RADIO flj
0O O

Figure A.5 RUG7 Backpan Mount Arrangement

145

o 10.0°
La 95 ='-I
x
cuTouT 95°
il 3416 Drill
50" L-—— J160r _— é‘tb_
225
¥
L. "\. 10.5° |
- ~ . *
Perimeter of Faceplate

FIGURE A.6 Panel Cutout for RUG6/8 Panel Mount

146

APPENDIX B...EXAMPLE REMOTE RTU PROGRAM

The fuIigwing program is for a RUG6D acting as an RTU in a working application. This program implements
a complete RTU mlcllzldin,g analog calibration, setpoint comparison, pump controls, valve controls, display formatting, user
inputs, menus, statistical data gathering, alarm detection, and more. Refer to Figure B.1 for the required 1/O connections

compatible with this program.

'SHORREMS...program for Shoreline Booster station |
'Station address=8

"Analog inputs;

'Al%(1)=Suction pressure
'AT%(2)=Pump discharge pressure
'Al%i(3)=5ite discharge pressure
'A1%(4-10)=spares

'Al%(1)=unregulated supply voltage
'"Al%(1 1)=Battery voltage

'Digital inputs:
'DI%%(1)=intrusion
'DI%(2)=fire alarm
%3)=wet dry well
DI%(4)=flow pulses
'DI%(5)=pump 1 run
'DI%(6)=pump 2 run
'DI%(T)=

‘DI%(8)=

DI%(9)=

"DI%(10)=
DI%(11)=
DI%(12)=

'DI%a(13)=

'DI%(14)=
'DI%(15)=

'DI%{ 16)=Trigger tone command for test

'Digital outputs:

'DO%(1)=0pen valve command
'DO%{2)=Close valve command
'DO%(3)=Transfer solenoid
'DO%(4)=Pump 1 call
'DO%(5)=Pump 2 call
'DO%{(6)=

DO 7-8 F=spares

147

oeeRoe2Re

|

R
Fire Alarm = i1 @ 8
Wet Dry Well — ~—F8ia—{(2 @| nos
ramthe >t to PROTECTED oo
e D15 cr
Pump2 Run |—~—1 e 1o @| nor
o7 |@ FIELD NCE
big |@ 6
pia [@ BOARD [T
ol g g NC5
GO .|
e 4 ol [Pump 2 Call
2 DIGITAL I DIGTAL QUT &
i1 & NCd
D2 @re+——1— pump 1 Call
Dit3 n——
Dind NC3
DS o ¥fer Solenald
oig @ ~no3——
com | @ NG2
com (@ 82— (lose Valve
coM [@ Bor—f—
com @] MC1
cou P
oom (2] | L [@rer—— Som e
r—
e
mic*
4 SPEECH 10
K.l E
com @ =
cOM g
oM
g 21 > Loor supeiy -
sy |@ —
my |@
ANALOG IN D
e
, . g
@Porecoe000 0@ d)]
I -
A1 A2 AJ A4 AS A5 AT A8 AD ABAJ1COB
510 Ohm
" }—+Baltery
7N
et Presurs |) (v
L
Discharge Pressure)
£
(Cutlet Pressurs L)

FIGURE B.1 EXAMPLE RTU PROGRAM 1/O

148

'Telemetry arrays:

'‘AR%(SN,0)=# bytes destination to transmit

'AR%(SN, 1)=bit 16= telemetry flag...always 1
'AR%(SN,2)=virtual DO 1-16

'AR%(SN,3)=virtual DO’s 17-32

'AR%(SN,4)=virtual DO’s 33-48

i bit 14=Noon clock syne

' bit 15=send tone after usual msg for test
' bit 16=com enable
'‘AR%(SN,5-25)=setpoints 1-21

"AT%I(SN,0)=# bytes to transmit

'AT%(SN,1)=bit 16=telemetry flag

' bits 1-15=spares

'AT¥{SN,2)=DI%(1-16)

"AT%(SN,3)=DI%(17-32)

"AT%(SN,4)=DI%(33-48)

'‘AT%(SN,5)=virtual DI's to trigger alarm dialing

- bit 16=com fail inserted by central RUGID
'AT%(SN,6)=virtual alarms

"AT%(SN,7...)=analogs from remote:

"Setpoints;

'SP{1)=Access keyword

'SP(2)=Analog filter time constant, sec.

'SP(3)=unregulated supply threshold for power fail detect
'SP(4)=battery voltage threshold for low battery voltage alarm
"SP(5)=raw count for analog sensor fail

'SP(6)=gallons per pulse on flow input

'SP(7)=valve full traverse time, sec.

'SP(8)=valve pulse on arrow key, sec.

'SP(9)=flow control deadband, GPM

"SP(10)=close divider...shortens valve actuation time in close direction

"Timers:

"DT%(1)=general purpose timer

'DT%(2)=PID pause time, sec.

'DT%(3 }=pump call delay timer, 10 sec.
'DT%(4)=Com fail counter, 60 min.

'DT%i{5)=last com counter up to 4000 sec.
'"DTY%(6)=Flow integration timer, 10 sec.
'DT%(7-38)=virtual alarm delay timers/enables
'DT%%(39)=intrusion disable timer

'DT%(40)=valve hold timer on pump transition, 60 sec.

'Misc. arrays:

'TM%(5)=image of AT%(2-5) for alarm change detection
'AY(1-11)=EU versions of analog inputs after filters

'GT()=grand totalizers

y 1=flow, 2=P1 run time, 3=P2 run time, 4=P1 starts, 5=P2 starts
'HT(}=24 hr totalizers

'Misc variables:

149

'PA=poll address for detecting reception

'PT=poll address for transmissions

'DF=display flag...0=main, I=master setpoints, 2=alarms
"WU=number of alarms last scan for alarm display
"Ni=image of AT%(1,5) for alarm display

"UlU=total flow samples accumulated

'LC=last com, 1=master, 4=3.7 MG tank

‘FS=flow setpoint, from master if remote, local if local
"WC=valve control if in local...0=manual, 1=auto
"LNV=3.7 MG tank level last reported

'FG=flow integration flag...0=0K, 1=kill flow rate calc til good timing

START dim Al1%(11),DI%(16),DO%(8),CK%(6},5P(30)
dim AT%(15,32),AR%(15,32),DX%(16)
dim AM(11),AB(11)AY(11),DT%(40),G 1%(16),G0%(16)
dim IM%(6),DP%(32),PL(3),DU%(8)
dim GT(10),HT{(10)
Al%(0)=4372
TN=10:HU=100:TH=1000:K8=128:K3=32767:V1=32512
DD=peek(V1+3)
K2=256%*256
gosub BINMASK
gosub CALINIT
DF=0;gosub CLRSCREENC:gosub DISPLAY
for I=1to 15
ATY%(1,1)=G1%(16)
next
DU%(0)=0

if (SP(3)+SP(2))<1 then gosub INITSP "Init sp's?

'Set up Al sampling
'Get address

'‘Setup masks for TLM
‘Init Al calibration
'Show display

‘TLM flags

'No periodic pulse durations

RA=(peek(124)*256+peek(123))-(peek(122)*256+peck(121))' RAM left

FG=1

LOOP gosub USERIN
gosub TLMUPDATE
gosub WATCHTIME
gosub RTCAL
gosub ALARMS
gosub DISPLAY
gosub WATCHTEST
gosub WATCHCOM
gosub CTRL
gosub STATS
goto LOOP

STATS UU=UU+1

'Kill flow rate calc til time

"Watch for keystroke

'Keep outgoing data current
"Watch the clock for stats
'Handle analog inputs

"Watch for alarms

‘Update LCD

"Watch for local tone test cmd
'See if reception

'Control valve

"Statistics

"Take statistics...sample counter

for 1=1 to 2:HT(I+4)=HT(1+4)+DI%(I+4):next:return Pump run samples

CTRL X=0:Y=AT%(1.6)
if AT%(1,5)<0 then X=1
if (Y and G1%(3)y=0 then X=1
if (Y and G1%(4)y=0 then X=1
if (Y and G1%{8))<>0 then X=1
if (Y and G1%(9))==0 then X=1
if X=0 goto LATCHOK

150

" has laiched alarms
‘Control...com fail?
"High res.?

"Low res?

"Low disch pressure?
"Low outlet pressure?
"Latched alarms OK?

DO%u(3)=0
DU%(1)=0:DU%{2 =0
goto PRESSMODE

LATCHOK Y=AR%(1,2) and 4

if (AT%(1,4) and 2)==0 then VC=1
if Y=0 goto PRESSMODE

FLOWMODE DO%(3)=1

if FS<1 then FS=1

AT%(1,4)=AT%(1,4) or 1

gosub PMPCTRL

forI=1to2

if DO%(1+3y<=DI%(1+4) then DT%{40)=60
next

if DT%%(2)<>0 or DT%(40)<>0 then return
DT%{(2y=AR%(1,15)

if VC=0 then return

ER=AT%(1,10)-F8

if abs(ER)<SP(9) then return
X=ER*(AR%{1,10/TH)YFS*SP(7)

if SP{10)<35 then SP(10)=5

if X<-SP(7)5 then X=-SP(7}/5

if X>=SP(7)/SP(10) then X=SP(7)/SP(10)
if X<i0 goto FLOWMODE1

X=X"*55

if X>K3 then X=K3

DU%{2)=X:return

FLOWMODE] X=-X*56

if X>K3 then X=K3
DU%(1)=X:return

PRESSMODE AT%({1,4)=AT%(1.4) and G0%i(1)

DO%%(3 =0

X=AR%(1,2)

if DT%(3 =0 then retumn

if LP<1 then LP=1]

if LP>2 then LP=2
XX=0:Y=AT%(1,6)

forI=d to 6

if (Y and G1%([))<=0 then XX=1
next

if XX=0 goto PRESS2

for I=1 to 2:gosub PMPOFFTIME
if DT%(3)===0 then [=3
next:returm

PRESS2 Y=DO%{4)+DO%(5 +DI%(5)+DI%(6)

for =] to 2
if (X and G1%(1+8))==0 goto NXPUMP
if ¥==0 goto PRESS4

'TS off
'Kill open/close solenoids

'Flow or pressure mode from master?
"Valve auto if remote

"Flow mode... Xfer solenoid on
"Watch for div by zero

"Show mode to master

"Handle pumps

"Test for pump call/run mismatch
'"Preset valve hold timer if so

"Pause timer still running?
‘Restart timer

"Valve manual?

"Error

'Error > deadband?
'Error*PB/FS*raverse time

"Watch range

"Lirnit pulses to traverse/s
"Neg. error?

'Basic clock increments
"Watch range

'Pulse CLOSE contact
‘Basic clock inerement
"Watch range

"Pulse OPEN contact
'Show mode to master
'De-energize xfer solenoid

"Pump delay timer
'Lead pump range

"Y' has latched alarms
'Latched alarm?

'Skip around if OK
'Pump off
'Pump delay timer on?

'# pumps called or running
"Test for hand off...
"Auto?

'"Already one on?

if (X and Iy=>0 then gosub PMPONTIME:goto TIMTEST 'Hand?

PRESS4 if (X and [)=0 then gosub PMPOFFTIME
TIMTEST if DT%(3)<>0 then [=3
NXPUMP next

if DT%(3)<=>0 then return
if ¥<==0 goto POFFTEST

'Off?
"Pump delay timer on?

"Pump delay timer
'Have one on?

if (X and G1%(LP+8))=0 then gosub ALTERNATE:return 'Auto?...¢lse change

151

if LV<AR%(1,5) then I=LP:gosub PMPONTIME "Tank < SP, start pump
return

POFFTEST if LV=AR%(1,6) then I=LP:gosub AUTOPMPOFF 'Tank = SP, stop pump
retum

AUTOPMPOFF for I=1 to 2
if (AR%6(1,2) and G1%(1+8))=0 then gosub PMPOFFTIME "Off if auto
nextireturn

PMPONTIME if DO%(1+3)=0 then DO%(1+3)=1:DT%(3)=10:gosub ALTERNATE '‘On

return
PMPOFFTIME if DO%(1+3)<=0 then DO%(1+3)=0:DT%(3)=10 "Pump off if on
return
PMPCTRL if DT%(3)<>0 then return 'Ctrl pump in flow mode...pump delay timer
if LP<I then LP=1 'Lead pump range
if LP>2 then LP=2
KX=0:Y=AT%{1,6) "Y has latched alarms
for I=4 to &
if (Y and G1%(I))<=0 then XX=1 "Latched alarm?
next
if XX=0 goto PPRESS2 'Skip around if OK
for I=1 to 2:gosub PMPOFFTIME "Pump off
if DT%(3==0 then 1=3 "Pump delay timer on?
nextireturn
PPRESS2 Y=D0%(4+DO%(5)+DI%(5)H+D1%(6) '# pumps called or running
K=AR%{1,2) 'Control bits
forI=l to 2 "Test for hand off...
if (X and G1%(1+8))==0 goto NNXPUMP "Auto?
if Y<==0 goto PPRES54 'Already one on?
if (X and I)<>0 then gosub PMPONTIME:goto TTIMTEST 'Hand?
PPRESS4 if (X and 1)=0 then gosub PMPOFFTIME 'Off?
TTIMTEST if DT%(3)<0 then I=3 'Pump delay timer on?
NNXPUMP next
if DT%{3==0 then return "Pump delay timer
if Y<=0 then refurn 'Have one on?
if (X and G1%(LP+8))=0 then gosub ALTERNATE:return 'Auto?...else change
I=LP:gosub PMPONTIME ‘Start pump if of T
return
ALTERMNATE LP=LP+1 'Change lead
if LP>2 then LP=1
return
WATCHTEST if DI%(16)<1 then return "DI%(16} tone test trigger?
gosub BLANK7:print "Transmitting on 4-wire port...";
PO%=5:print "EX"; "Transmitter on
WATCHTEST] if DI%(16)>0 goto WATCHTESTI "Loop until DI%(16) off
gosub BLANKT:print "Test terminated...”
PO%=5:print "Y";:return "Transmitter off, onhook

GT(1)y=flow, 2=P1 run time, 3=P2 run time, 4=P1 starts, 5=P2 starts

152

WATCHTIME if DT%{6)>2 goto WATCHT1
WATCHLOOP if DT%(6)<=0 goto WATCHLOOP

DT%(6)=10
X=DX%(4):DX%(4)=0
HT(1)=HT(1)+X
GT(1)=GT(1)+X*SP(6)

if FG<=>0 then FG=0:goto WATCHT!I
X=X*SP(6)*6

if X<0 then X=0

if X>K3 then X=K3

AT%(1,100=X

WATCHTI if MM=CK%(1) then retumn

MM=CK%({1)

if HH=CK%&(2) then return
HH=CEK(2)

if HH==8 then return
X=HT{1)*SP{6)TH

if X<0 then X=0

if X=K3 then X=K3
AT%(1,12)=3CHT(1)=0

if UU=1 then UlU=1
forl=11t02
X=HT(I+4)/UU*24*HU
HT(I+4)=0

if X<0 then X=0

if X=2390 then X=2400
AT%(1,1+12)=X
XN=DX%{(4-+1):DX%(4+1)=0

if X<0 then X=0

if X>K3 then X=K3
AT%(1,1+14)=Xmext

for I=1to 2
GT(1+[=GT(1+D+AT(1,1+12YHU
GTG3+D=GTR+D+ATY(1,1+14)
next

forl=lto 3

if I=1 then X=GT(I}¥TH

if =2 or I=3 then X=GT(I)*HU
if I=4 or 1=5 then X=GT{(I)
Y=int{ X/ 10000)

if Y=< then Y=0

if Y=K3 then Y=K3
AT%(1,16+1*2)=Y
Y=int(X-Y*10000)
ATW(1,17+1*2)=Y

next

=0

if CK%(6)<>2 then return

for I=1 to 2:gosub PMPOFFTIME next
return

RTCAL if SP(2)<1 then SP(2)=1

Y=1/5P(2)
forI=11011

153

‘Flow integration done?
"Wait for exact time tick
‘Restart timer

'‘Get flow pulses

Total pulses this day
‘Grand total gallons

"Skip flow rate calc if bad timing

Flow rate GPM *
"Watch range

‘Save to TLM
"Watch the clock

"New hour?

‘B AM?
‘Total flow last 24 hrs KG *
'Watch range

‘Save to TLM
'Head off divide by zero

"‘Pump run times *100
'Clr accumulator
"Watch range

‘Round to 24.00 hrs
'‘Save run times to TLM
'Starts

"Watch range

'Starts to TLM
‘Pump grand totals...

'"Pump run times

‘Pump starts

'Grand totals to TLM...
'Total flow KG

'Run times hr * 100
‘Starts

'MS

‘Waitch range

‘Save MS to TLM
"Now for LS
‘Save LS to TLM

‘Reset # samples
‘Monday?
'Kill pump(s)

‘Analog LPF & EU conversion

‘Time constant

if 1=4 then =10 'Skip some

if 1<9 and (AI%(1)<SP(5)) goto RTCALZ 'Sensor fail?...if so freeze
AY([D=AY(DHY*(AI(I)* AM(T+AB(T))N(1+Y)
if AY(T)>TH then Y=TH ‘Watch for high values
if AY(1)<0 then AY(I)=0 ‘And low
RTCALZ next
for I=1to 3 "Now for pressures
X=AY(D) 'Get pressure
if 3=K3 then X=K3 "Watch range
AT%(1,1+6)=X 'Save to TLM
next
X=AY(11*TN "Battery voltage
if X<0 then X=0
if X>K3 then X=K3 "Watch range
AT%(1,11)=X 'Save to TLM
returm
DISPLAY PO%=0:CC%=0:CR%=0 'Show data on LCD
if LC<>1 and LC<==35 then LC=1 "Range of last com
if DF==0 goto DISPLAY'| "Which display?
print * *** BOOSTER STATION 1, ADDR=",DD;"***"
print
print "3.7 MG ft=";
if LC=4 then print AR%(LC,8)TN;" ",:goto DISPLX '3.7 source?
print AR%(LC,10)'TN;" ", ‘Master source

DISPLX CC%=1%:print "Flow GPM=";AT%(1,10);" "
print "Sea. PSI=";AT%(1,7);" ",
CC%=19:print "Flow SP GPM=";int(FS})," "
print "Pumps PSI=";AT%(1,8)," ",
CC%=19:print "Distr, PSI=";AT%(1,9);," "
if (AT%({1.4) and 1)=0 then print ".Pressure.”;:goto DISP1
print "...Flow...";
DISP1 if (AT%(1,4) and 2)=0 then print ".Local..";:goto DISP2
print ".Remote.”;
DISP2 if (VC)<+0 then print "..Auto..";:goto DISP3
print ".Manual.";
DISP3 goto MENU
DISPLAY if DF=1 goto DISPLAY?2
print " **+#* MASTER SETPOINTS ***"
print "Bst ON fi=";AR%(1,5)TN;," ",
CC%=20:print "Lo PSI in=";AR%(1,7);" "
print "Bst OFF ft=";AR%(1,6)TN;" ",
CC%=20:print "Lo PSI dis=";AR%(1,8)," "
print "Flow GPM=";int(FS)," ",
CC%=20:print "Lo PSI out=";AR%(1,9)," "
print "Prop band=";AR%(1,12}/TN;" ";
CC%=20:print "Hi PSI dis=";AR%(1,13);," "
print "Pause sec=";AR%(1,15)," ";
CC%=20:print "Hi PSI out=";AR%(1,14);" "
goto MENU
DISPLAY?2 gosub CLRSCREENC:print " rE ALARMS ***"
CR%=1:X=AT%(1,5:Y=0:YY=0
for I=1 to 16
if (X and G1%{I))=0 goto DSP13 "No alarm?

154

CCW=YY

on | goto ALR1,ALR2, ALR3, ALR4,ALRS,ALR6,ALR7,ALRS
on 1-8 goto ALRO,ALRIOALRILALRIZALRIIALRI4.ALRISALRLG

ALRI print "Intruder ":goto DSP13X

ALR2 print "Low batt ":goto DSP13X

ALR3 print "Pwr fail ":goto DSP13X

ALR4 print "Fire ":goto DSP13X

ALRS print "Wet well ":goto DSP13X

ALRG print "P | Fail ":goto DSP13X

ALR7 print "P 2 Fail ":goto DSP13X

ALRSR print "HiOutPrs ":goto DSP13X

ALRS print "LoOutPrs ":goto DSP13X

ALRI0 print "InXD Fail":goto DSP13X

ALRI1I print "DsXD Fail":goto DSP13X

ALRI2 print "OutXDFail":goto DSP13X

ALRI3 print " ".goto DSP13X

ALRI14 print " ":goto DSP13X

ALRI1S print " ":goto DSP13X

ALR.16 print "Com fail ";goto DSP13X

DSP13X Y=Y+1

if ¥=5 then Y=0:YY=YY+12:CR%~1 "Next column

DSP13 next

X=AT%(1,6)
for[=3t0 9

if (X and G1%(I))=0 goto DSP13A No alarm?

CCW=YY
on I goto ALM1,ALM2 ALM3ALM4 ALMS ALM6,ALM7,ALMS
on I-8 goto ALM9,ALMI0OALMITLALMIZALMIIALMI4ALMIS ALMIG
ALM]I print * ":goto DSP13Z
ALM?2 print " ":goto DSP13Z
ALM3 print "Hi Resv ":goto DSP13Z
ALM4 print "Lo Resv ":goto DSP13Z
ALMS print "Hi InPres":goto DSP13Z
ALMBS print "Hi OutPrs™:goto DSP13Z
ALMT print "Lo InPres™.goto DSP13Z
ALMSE print "Lo DisPrs".goto DSP13Z
AI1MS9 print "Lo OutPrs":goto DSP13Z
ALMI0 print " ":goto DSP13Z
ALMI1 print " ":goto DSP13Z
ALMI2 print " ":goto DSP13Z
ALMI3 print " ".goto DSPI3Z
ALMI14 print " ".goto DSP13Z
ALMI1S5 print " ":goto DSP13Z
ALMI6 print " ":goto DSP13Z
DSP13Z Y=Y+I1
if Y=35 then Y=0:YY=YY+12:CR%~=1 Mext column
DSP13A next
MENU CC%=0:CR%=7:print "1=Reset, 2=DSP, 3=Setup, 4=Ctrl ";
print 4000-DT%{5);" ";
refum

WATCHCOM X=0 "Watch for incoming msgs

if DT%0(4)=0 then AT%(1,5)=AT%(1,5) or G1%:(16) 'Com fail?
for I=1 to 10 "Test for any msg

155

if AR%6(1,1)=<0 then X=LI=11
next:PA=X

if X=0 then return

LC=X

AR%(PA.1)=0

if PA=1 then AT%(1,5=AT%{1,5) and G0%a(16)
gosub BLANK7:print "Received from station";PA

if PA=1 then LV=AR%(1,10)
if PA=4 then LV=AR%(4,8)

if PA=1 then DT%(5)=4000:DT%{4)=3600

if (AR%(1,4) and G1%(14))y==0 then CK%(1)=0:CK%(2)=12 "Noon clock sync
'Clr clock sync

AR%(1,4)=AR%(1,4) and G0%(14)

No message?

'Hold last com for display & ctrls

‘Clr TLM flag

'Clear com fail flag

1.7 MG from master
3.7 MG from tank sta

"Restart ¢trs

if (AR%(PA.4) and G1%(15))<=0 then gosub SENDTONE 'Test tone?

AR%(PA,4)=AR%(PA 4) and G0%(15)
if (AT%i(1.4) and 2)=0 then return
FS=AR%I(1,11)

if AR%(1,2)=<0 then gosub ACK:ARY(1,2)=AR%(1,2) and GO%4(16)
if (AR%(1,2) and G 1%(9))=0 then VC=0:return

VC=1:retum
"Manual valve

'DT%(5)=1ast com counter up to 4000 sec,

SENDTONE DT%(1)=20
PO%=5:print "EX";

gosub BLANKT7:print "Sending test tone to sta",PA

GOTMSLOOP if DT%(1y<-0 goto GOTMSLOOP
gosub BLANK7:print "Done with test...";
PO%=>5:print "Y";:retum

BLANEK3 CR%=2:goto BLNK
BLANK4 CR%=3:goto BLNK
BLANKS CR%=4:goto BLNK
BLANK®6 CR%=5:goto BLNK
BLANK7 CR%=6:goto BLNK
BLANKS CR%=7:goto BLNK
BLNEK CC%=0:PO%=0:print "
CC%=0:retum

ALARMS if (AT%(1,4) and 2)==0 goto ALARMSI
AT%(1,5)-0:AT%(1,6)=0:return
ALARMSI X=0

if DI%(1)==0 and DT%{39)=0 then X=X or 1

if AY(11)<SP(4) then X=X or 2
if AY(10)=SP(3) then X=X or 4
if DI%(2)<>0 then X=X or 8

if DI%(3)<>0 then X=X or 16

if AY(3)>AR%(1,14) then X=X or G1%(8)

if AY(3)<AR%(1,9) then X=X or G1%(9)
for[=l1to3

if AI%(T)<SP(5) then X=X or G1%(I+9)
next

forl=lio2

if DI%(1+4)<=-D0%(1+3) then X=X or G1%(I+3)

156

'Clr test tone

'Local valve mode?
"Flow setpoint

"Master reset?

‘Auto valve?

'Give 20 sec. test tone
"Transmit tane on

"Wait til done

‘Blank line 3
‘Blank line 4
‘Blank line 5
'‘Blank line 6
‘Blank LCD line 7
'Blank line 8

"In local control mode?

'Clr all alarms & exit *

"Test alarms

'Intrusion?

'Low battery?

"Power fail?

'Fire?

"Wet dry well?

'Hi outlet pressure

‘Lo outlet pressure

"Xducer fails?

Pump fails

next

X5=X:Y5=AT%(1,5)

for I=1 to 16

if DP%(1)=0 goto ALRMS55

if (X5 and G1%(1))=0 then DT%{1+6)=DP%(I):goto ALRMSS55
if (Y5 and G19%(1)y<=0 or DT%{I+6)<=0 goto ALRMSS5
Y5=Y5 or G1%(I):goto ALRMSS

ALBMSSS Y5=Y35 and GO%u(I)
ALRMSS next AT%(1,5FY35

X=AT%(1,6)Y6=AT(1,6)

‘Wew & old alarms

'Reset timers if alarms OK
‘Alarm enabled?

"Virtual alarms

"Mew alarm & timeout?
'Set alarm

'Clear alarm

'Save to TLM

"Mext word of virtuals

if LV=>AR%(1,18) then X=X or G1%(3) "Hi res.

if LV<AR%(1,19) then X=X or G1%(4) Lo res.

if AY(2)=AR%(1,13) then X=X or G1%(5) "Hi disch pressure

if AY(3)=AR%(1,14) then X=X or G1%(6) "Hi outlet pressure

if AY(1)=AR%(1,7) then X=X or G1%(7) ‘Lo inlet pressure

if AY(2)<AR%(1,8) then X=X or G1%(8) Lo discharge pressure

if AY(3)<AR%(1,9) then X=X or G1%(9)
X6=X

for1=1to 16

if DP%(1+16)=0 goto ALRMS66

‘Lo outlet pressure

‘Reset timers if alarms OK
'‘Alarm enabled?

if (X6 and G1%(1))=0 then DT%(I+22)=DP%(1+16):goto ALRMS6 'Virtual alarms
if (Y6 and G1%(1))==0 or DT%(I+22)=>0 goto ALRMSH "New alarm & timeout?
Y6=Y6 or G1%(1):goto ALRMSE 'Set alarm
ALRMS6G6 Y6=Y6 and G0%{T) 'Clear alarm
ALRMS6 next:AT%(1,6)=Y6 'Save to TLM
refurn
'SP(3)=unregulated supply threshold for power fail detect
'SP(4)=battery voltage threshold for low battery voltage alarm
"SP(5)=raw count for analog sensor fail
TLMUPDATE X=0
for I=1 to 16
if DI%(1}==0 then X=X or G1%(I) 'Setup DI's
next
AT%(1,2=X "Xfer DI's to TLM
AT%(1,1=G1%{16) 'Set tlm reply flags
return

USERIN PO%=0:get A

if len{ A%)=0 then return

if A$="1" then gosub ACK:goto USEROUT

if A$="2" then gosub CHNGDSPFLY :goto USEROUT
if A$="3" then gosub SETUP:goto USEROUT

if A%="4" then gosub MANCTRL:goto USEROUT

if A$="D" or A$="1" then gosub VVALVCTRL:return
if A$="C" then DT%(39)=3600

USEROUT gosub CLRSCREENC:gosub DISPLAY:FG=1:goto CHNG1

VVALVCTRL if VC==0 then refurn

if (AT%(1,4) and 2)==0 then retum
X=5P(8)*56

if X<=0 then return

if X=K3 then X=K3

157

'Get keystroke if any
‘Had char?

'ACK?

'Change display?
"Setup?

'Local ctrl?

"Valve ctrl?
'Intrusion disable?
'"Exit

'In manual?
'Remote?
"Pulse duration
"Watch range

if AS="U" then DU%(1)=X:return 'OPEN valve

DUS2)=X return 'CLOSE wvalve
MANCTRL gosub CLRSCREENC 'Enable manual control of valve

print:print:print "Enter access keyword...":gosub KBTOX

if X<=8P(1) then retumn "Test keyword

MANCTRLX gosub CLRSCREENC
print* *** MANUAL CONTHROL ***"
print
print "1 Flow setpoint, GPM=";F§
print "2 Control source= ";
if (AT%(1,4) and 2)=0 then print "Local":goto MANCTRL1
print "Remote"
MANCTRL] print "3 Control mode= ",
if VC=0 then print "Manual";goto MANCTRL3
print "Auto"
MANCTRLS3 print "4 Lead pump=";LP
print:print "Choose option to change (1-4)...";
gosub KBTOA
if A$="1" goto FSENTRY
if A$="2" goto SOURCETOG
if A§="3" goto MODETOG
if A$="4" goto PUMPTOG
returm
FSENTRY gosub BLANK7.print "Enter new setpoint...";:gosub KBTOX
if XX<0 or X<0 or X>K3 goto MANCTRLX

FS5=X:goto MANCTRLX 'Save new setpoint
SOURCETOG X=AT%(1,4) and 2 '"Toggle source select
if X=0 then AT%(1,4)=AT%(1.4) or 2:goto MANCTRLX '"Turn on if off
AT%(1,4)=AT%(1.4) and GO%(2):goto MANCTRLX "Turn off
MODETOG if VC=0 then VC=1:goto MANCTRLX 'Auto
VC=0:goto MANCTRLX ‘Manual
PUMPTOG DO%(4)=0:D0%(5)=0:DT%{3)=10:return "Pumps off...let alternate
CHNGDSPLY DF=DF+1
if DF>=2 then DF=0
CHNGI if DF=2 then Nl=-1:NU=20 'Force rewrite of alarms
refurn

ACK if (AR%(1,2) and 4)==0 goto ACK1 'ACK...clear lockouts

AT%(1.4)=AT%(1,4) and G0%(1):goto ACK2 'Pressure mode
ACK] AT%(14=AT%(1,4)or 1 'Flow mode
ACK2 AT%(1,5)=AT%(1,5) and G0%(16) 'Clr com fail latch
DT%(4)=3600 'Com fail timer
X=AT%(1,6) 'Clr level latches...
for =3 to 9: X=X and G0%i([):next
AT%(1,6)=X
DO%%(1)=0:D0%(2)=0 'Kill open/close solenoids
refurn
SETUP gosub CLRSCREENC 'Setup setpts...
print:print:print "Enter access keyword...":gosub KBTOX
if X===5P(1) then return "Test keyword
gosub CLRSCREENC

158

IJl'iIIt L 2%k SEmF LEE LU

print

print "1 Local setptzs 5 Alarm delay setpoinis”
print "2 Set clock 6 Initialize totalizers"
print "3 Calibrate"

print "4 Setup com”

print

print "Choose function (1-4)...";:gosub KBTOA

if A%="1" goto LOCALSP ‘System setpoints?
if A$="2" goto SETCLOCK 'Set clock?
if A$="3" goto CALIN ‘Calibrate?
if A$="4" goto SETADDR. 'Setup com?
if A$="5" goto ALRMDLYSP ‘Alarm delay setpoints?
if A$="6" goto INITRT "Init totalizers
return
INITRT gosub CLRSCREENC "User sets run times
print " *#* TOTALIZERS ***"
print

print "1 Inflow, KG=",int(GT(1)}yTH*HUYHU
print "2 Pump 1 run time, hrs=";int{GT(2)HU)*HU
print "3 Pump 2 run time, hrs=";int{GT(3)/HUI)*HU
print "4 Pump 1 starts=";int(GT(4))

print "5 Pump 2 starts=",int(GT(5))

print "Enter total to set (1-5)...";:gosub KBTOX

if XX<0 or X=<1 or X=3 then return

Y=X:print

if XX<0 or X<0 then retum
GT(Y =X:HT(Y)=0

if ¥=1 then GT(Y)=X*TH
goto INITRT

ALRMDLYSP BG=1:EN=6
ADLY! gosub CLRSCREENC

print " *#* AL ARMS DELAYS, SEC. ***"

for I=BG to EN:J=l:gosub ALRMNAME]

print [;A$;DP%(I):next

print "Choose setpoint to change...";:gosub KBTOX
if (XX<0) or (X<BG) or (X=EN) goto ADLY2
print:Y=X

print "Enter new value for SP",X;"...";:gosub KBTOX
if XX <0 or X<0 or X>32767 goto ADLY?2

DP%(Y F=X:goto ADLY]

ADLY2 BG=BG+6:EN=BG+5

if BG=32 then return
if EN>32 then EN=32
goto ADLY1

'Convert to gallons

'User sets alarm delay times

'Get alarm name

'In range?

'In range?
'Save & go for more
'Point to next group

ALRMNAMET if J<1 or J=32 then A$=""return '‘Get alarm name [to A%
on J goto AL1,ALZ AL3 AL4 ALS ALGALT,ALS
on J-8 goto AL9,AL10,AL11,AL12,AL13,AL14,AL15,ALI6
on J-16 goto AL17,AL18,AL19,AL20,AL21,AL22,AL23 AL24
on J-24 goto AL25,A1L26,AL27,AL28 AL29,AL30,AL31,AL32

139

AS="":return
ALl A$="Intrusion “:returmn
AL2 A$="Low battery "“:refurn
AL3 A%="Power fail "return
AL4 A$="Fire alarm "return
ALS A%$="Wet dry well ":retum
AL6 A$S="Pump | fail ":return
AL7 A$="Pump 2 fail "return
ALS A$="High outlet pres":return
AL9 AS="Low outlet press":retumn
AL10 A$="Inlet XD fail ":retumn
AL11 A%="Disch XD fail ":return
AL12 A$="Outflow XD fail ":return
AL13 AS="":return
AL14 AS=""return
AL15 A$="":return
AL16 A$="":return
AL17 A$="":return
ALI8 A$="":return
AL19 A$="High res. alarm ";return
AL20 A$="Low res. alarm ":retumn
AL21 A$="Hi disch press ":retumn
AL22 A$="Hi outlet press ":return
AL23 A$="Low inlet press ":return
AL24 A%="Low disch press ":return
AL25 A$="Low outlet press":return
AL26 A$="":return
AL27 A$="":return
AL28 A$=""return
AL29 A$="":return
AL30 A$=""return
AL31 A$=""return
AL32 A$=""return

LOCALSP gosub CLRSCREENC
print" *** LOCAL SETPOINTS pg 1 ***"
print

print "1 Access keyword=";5P(1)
print "2 Analog filter sec.=";5P(2)
print "3 Power fail V=";5P(3)
print "4 Low battery V=";5P(4)
print "5 Analog XD fail raw count=";5P(5)
print "Choose setpoint to change (1-5)..."::gosub KBTOX
if XX=0 or X<I or X>5 goto LOCALSP1
¥=X:gosub BLANKS
print "Enter new value for SP*Y;"...";:gosub KBTOX
if XX=0 or X<0 goto LOCALSP
SP(Y)=X:goto LOCALSP
LOCALSPI1 gosub CLRSCREENC
print " *** LOCAL SETPOINTS pg 2 ***"
print
print "6 Flow gallons/pulse=";5F{(6)
print "7 Valve full traverse sec=";5P(7)
print "8 Valve pulse on key, sec.=";5P(8)

160

‘User sets system setpoints

'In range?

'Get new value
‘In range?
‘Save it

"User sels system setpoints

print "9 Flow deadband, GPM=";SP(9)
print "10 Close divider (10-50)=";SP(10)

print "Choose setpoint to change (6-10)...";:gosub KBTOX

if XX<0 or X<6 or X>10 then retumn

Y=X:gosub BLANKS

print "Enter new value for SP";Y;"...";gosub KBTOX
if XX=0 or X<0 goto LOCALSPI

SP(Y)=X:goto LOCALSPI

SETADDR V1=32512:V2=VI+16:V3=V2+16
gosub CLRSCREENC
gosub OPENRAM:X=3:gosub DELAYX
gosub ADDRESS
gosub SETCRCOPS

REBOOT print "REBOOTING...PLEASE WAIT":X=2:gosub DELAYX

poke 4,3:poke 5,136:X=USR(0)

DELAYX DT%l(1)=X
DELAY if DT%(1)<=>0 goto DELAY]
return

ADDRESS X=8:print:print "Setting address to",X
poke V1+3,X:poke V2+3,X:poke V343 X:return

VOTEXTOY poke V1+Y, X:poke V2+Y X:poke V3+Y X:return

OPENRAM print "Opening RAM..."
X=peek(969) and 191:poke 969,X:poke 34800, X return

SETCRCOPS print "Setting up CRC flags & com delays..."
X=1:Y=1:gosub VOTEXTOY
X=22:Y=2:posub VOTEXTOY
X=57-Y=10:gosub VOTEXTOY
X=9:Y=11:gosub VOTEXTOY
X=7:Y=12:gosub VOTEXTOY
X=64:Y=15:gosub VOTEXTOY
return

BINMASK X=1 'Setup mask fields
for I=1 to 15:G1%{(I1F=X:G0%(1)=2-1:X=X*2:next
G1%(16)=-32768:G0%(16)=32767:return

SETCLOCK gosub TIMENOW:print "Enter new day of week:"
print "1=5un, 2=Mon, 3=Tue, 4=Wed"
print "5=Thu, 6=Fri, 7=Sat";:zosub KBTOA
if A$<"1" or AS>"7" goto MONTHIN
CE%a(6)=val(A%)

MONTHIN gosub TIMENOW:print "Enter new month (1-12):":input 1

if 1<1 or =12 goto DAYOFMONTH
CK%(4)=1

DAYOFMONTH gosub TIMENOW:print "Enter day of month (1-31):":input |

if I<1 or I=31 goto YEARIN
CE%(3)=1

YEARIN gosub TIMENOW:print "Enter new year (0-99):":input 1

161

'In range?

'Get new value
'In range?
‘Save it

"Start of voted table

'Open RAM & wait for write protect
'Set address
'Setup for CRC radio TLM

‘Imp to $8803 (MAIN)

"Delay X seconds

'Store new unit address

"Poke X to VOTDAT.Y ...

'Open RAM

'Setup RAM for CRC, radio..parity
'Baud, stop bits, word length
'Tone use...low tones

'CRC communications

"Delay=.1 sec before XMIT

"Setup modem connection

if 1<0 or I=99 goto HOURIN
CK%(5)=I
HOURIN gosub TIMENOW :print "Enter new hour (0-23):":input |
if 1<0 or [=23 goto MINUTEIN
CK%(2)=1
MINUTEIN gosub TIMENOW:print "Enter new min. (0-59):":input 1
if I<0 or I>59 then return
CE%(1)=1:CK%{()=0:return

TIMENOW gosub RTC
print:print "Present date/time:";JJ$:return

tkFEEEE "‘"""*St!tup RT‘C su-mg in]]’s:.t‘.“.ﬁ#t

RTC I=CK%(6)
if 1=1 or [>7 then JJ$=" "goto SKIPDAY
[=3*(CKY%{6)-1)+1:C0=CK%(1)
JI=mid$("SUNMONTUEWEDTHUFRISAT" L 3)+" "
SKIPDAY I=4:gosub TIMEX :JJ8=JJ$+""
[=3:gosub TIMEX :JJ$=118+"/"
[=5:gosub TIMEX :JJ$=115+" "
[=2:gosub TIMEX :1J$=118+chr$(58)
I=1:gosub TIMEX :J1$=115+" "return
TIMEX A$=stri(CK%(I}))
IF len(A%)<3 then JIS=115+"0"+rightS(AS, 1):return
J15=11%+rightS(AS,2):return

'KBTOX reads keyboard and puts value in X
‘Allows 120 sec for keysiroke
‘At end, if error or CR only, XX=-1, otherwise X has value entered

KBTOX J=CC%:DT%(1)=120:X=0:XX=0:1=0:L=0:B$=""
KBTOX]1 if DT%{1)=0 then XX=-1:retum
get AS
if len{A%)=0 goto KBTOX1
DT%(1)}=120
if A$="C" or A$="D" or A$="U" goto CLRIT
if X<0 and A§="-" poto CLRIT
if L=>>0 and A$="." goto CLRIT
I=I+1:print AS;
if A$="-" then X=-1
if I=1 and AS=chr$(13) then XX=-1:retumm 'CR only?
if A$=chr$(13) then X=val(B$):return
B$=B%+AS:goto KBTOX]1
CLRIT CC%~=1:for K=1 to L:print " ";:next:CC%~=]:goto KBTOX

KBTOA DT%(1)=120

KBI if DT%(1)=0 then A$="C":retarn
zet AS
if len{AS)=0 goto KB1
return

'CALMAN calibration routines
"Interacts with user to gather coefficients for 2 point calibration

162

"Day of week

"Month

"Day of month

"Year

"Hours:

"‘Minutes

‘read clock & format to 2 chars.

"Get KB value to X
"Get character

"Restart timer on keystroke

'2 "=" signs?

'2 decimals?

'Count chars received & echo
I'F'IBE lF-IT

'‘Save char & go for more

'Clr entry

"Wait up to 120 sec. for keystroke
"Timeout?

'Retum with keystroke in AS

'For analog input calibration:

L]
L]
¥
)
]
¥
I
i
{
i
i
i
i
i

M and B are stored in AM() and AB() respectively
To avoid losing cal when editing program, the calibration

constants are stored in the reserved area from

$1F00 through $1FFF. These are loaded by CALINIT upon
boot up. A total of 32 analog channels can be stored in this
area. This routine allocates space for 24 analog inputs, and

8 analog outputs. They are arranged thus:
$1F00-S1F03=AM(1)*65536
$1F04-81F07=AB(1)*65536
$1F0B-S1FOB=AM(2)*65536

§1FCO-SIFC3=0M(1)*65536
$1FC4-S1FCT=0B(1)*65536

'In realtime operation, result would be:

L)

result{T=AM(T)* Al%(1)+AB(I) for inputs 1 to 11
result{T=AM(IVAI%([)+AB(I) for inputs 12 and up.

'For analog output calibration:

M and B are stored in OM() and OB{) respectively

'In realtime operation, result would be:

'CALINIT reads reserved user area and gathers saved cal coefficients,

AO%(D=OM(I)* value(I}+OB(T)

Should be executed at beginning of program.

CALINIT for I=1 to 11

I=(I-1)*8:gosub CALBAMINX
AM(I)=X/65536
[1=(1-1)*8+4:gosub CALRAMINX
AB(I=X/65536

next

for I=1 to 8

I=(1+23)*8:gosub CALRAMINX
OMII)=X/65536
[I=(1+23)*8+4:gosub CALRAMINX
OB(I)=X/65536

next

return

CALRAMINX I=7936+11

X=peek(I)+256*peek(]+1)+65536*peek(J+2)
XX=peek(J+3) and 128

M=peek(J+3} and 127

X=X+16777216*(1I)

if XX=0 then return

X=2X:return

CALRAMOTX J=7936+11:11%=0

if X<0 then [1%=128: X=X

163

'Get AM() cal value to X
‘Scale down and save
'Get AB() cal value to X
‘Scale down & save

'Get OM() cal value to X
'‘Scale down & save
'Get OB() cal value to X

'Gret X from reserved area, byte]

"Get sign
'Get MS byte, no sign

'Save X to location in reserved arca, byte J
'Get sign of X

XN=X*65536: X X=int(3}/16777216)

X1%=XX and 127 or [1%:poke J+3,X1% 'MS byte (1)
=X-XX*16777216:X1%~=int(X/65536):poke J+2,X1% Byte (2)%***+
X=X-X1%"*65536:X1%=int(X/256):poke J+1,X1% 'Byte (3)***+*
=X-X1%*256:poke J,int{X):return 'LS byte (4)
CALIN gosub CLRSCREENC

print "Enter input channel to calibrate,"
print "Allowed range is 1 through 11, 0 exits":input X
if X<1 or X=11 goto CALDONE
CH=int(X)
print "Apply known low value to analog input™;CH
print "Key in corresponding engrg. units value.":input X
Al=X:A2=Al1%{CH)
print "Apply known high value to analog input",CH
print "Key in corresponding engrg. units value.":input X
AI=X:A4=AI%(CH)
if CH=11 then A2=1/A2:Ad=1/A4
if abs(A2-A4)>.000001 goto COMPUT
print "Input value error., restarting cal."
for I=1 to 1000:next
goto CALIN

COMPUT M=(A1-A3)/(A2-Ad)
B=Al-M*A2

Now show result of this calibration
gosub CLRSCREENC
A2=100:A3=0.5

CALOOP CR%=0:CC%=0
print "Present A1";CH;"=";AI%(CH);" "
if CH<12 then Al=int({M*AI%{CH}+B)*A2+A3)A2
if CH=11 then Al=int{{M/AI%{CH)+B)*A2+A3)A2
print "Engrg. value="A1;" "
print "Key in 1 to save"
print "Key in 2 to discard"

CALI get AS
if len{A%)=0 goto CALOOP
if A$=="1" goto CALIN
AM(CHF=M:AB({CH)=B
H=AM(CH):II=(CH-1)*8:gosub CALRAMOTX
X=AB(CHY:II=(CH-1)*8+4:gosub CALRAMOTX
goto CALIN

CALDOME print "Exiting calibration routines."
for I=1 to 1000:next:return

CLRSCREENC poke 549,128:PO%=0:print chr$(12):CC%=0:CR%~=0:return
CLRSCREENG poke 549,0:PO%=0:print chr${12):CC%=0:CR%=8:return
INITSP for I=1 to 32:DP%(1}=1:next

DP%{ 1 T=0:DP%({18)=0

SP(2)=1:SP(3)=13:SP(4)=12:SP(5)=100
SP(6)=10:SP(7)=7:SP(8)=.2:SP(9)=100:5P(10)=10:return

164

'Save channel we're calibrating

'Save it and A/D output

'Save it and A/D output
"1/AI%(]I) if expansion A/D

"Delay

‘Compute M
'and B

'Clear the LCD

"Use for significance control
'Set display cursor location
'Show user A/D input
'Control significance
'Expansion Al's

'Show resulting value

"Watch for keystroke

"Save coefficients
'Put in reserved area
"Ditto

'Return for more

Delay & exit

'Alarm enables & delays
'Kill some statuses

'SP(1)=Access keyword

'SP(2)=Analog filter time constant, sec.

'SP(3)=unregulated supply threshold for power fail detect
'SP(4)=battery voltage threshold for low battery voltage alarm
'SP(5)=raw count for analog sensor fail

'SP(6)=gallons per pulse on flow input

'SP(7)=valve full traverse time, sec.

'SP(8)=valve pulse on arrow key, sec.

'SP(9)=flow control deadband, GPM

'SP 10)=close divider

163

APPENDIX C...EXAMPLE AUTODIALING CENTRAL PROGRAM

This program is the central program from a working polled system having autodialing, MODBUS interface, dialin
reporting, local alarms, remote alarms, and more. Refer to figure C.1 for required 1/O.

'SHORCEN...Central program for Shoreline system, address=1
‘Master station address=1
'Remote Station address=3-20

'Analog inputs:
'Al%(1-11)=spares

"Digital inputs:

'DI%(1-14)=Spares
'DI%(15)=simulate ringing for test
'DI%(16)=tone on command for test

'Digital outputs:
'DO%(1)=Common alarm (remotes and master)
'DO%(2)=

"DO%(3)=

'"DO%(4-8)=spares

'Linkage from master RUGID to SCADAVU:
'100 words per station:

! 50 receive words... X0 to X49

’ 50 transmit words..X50 to X99

Telemetry arrays, sent by master, received by remote:

'"Master commands:

'AT%(1.4)

; bit 1=dialer ACK

! bit 2=dial all remotes (full poll cycle.)
'AT%(1,6)=

'"AT%(1,7)=Poll interval, sec.

'AT%(1,8)=

'"AT%{SN,0)=# bytes destination to transmit

'"AT%(SN,1)=bit 16= telemetry flag...always |

'AT%(SN,2)=virtual DO's 1-16

'AT%(SN,3)=virtual DO's 17-32

'AT%(SN,4)=virtual DO's 33-48

; bit 14=Sync clocks (remotes set clocks to 12:00)

' bit 15=Command remote tone after usual message
: bit 16=com enable

'ATY%(SN,5-25)=setpoints 1-21

167

et

EEEEEEEEEFEE R FEFRFEEFEEEIEE

on @ > COMMUNICATIONS
o2 (@
A @
oM @
ms @ PROTECTED
e |@
oir |@ FIELD
ms |@
bl |@ BOARD
oiin |[@
coM @
com (2] g
DIGITAL IN piGITALOUT &,
Di [@
Dz |@
o3 |@
D14
DIs
DitG
cOM
COM
COM
COM
COM)
U (R — T
@ SPEECH LD
EPEMER COM
cou 12
coM
== s (@ o Looesuply
v @
my (@
28y @) ANALOG IN
¥
i Ty
@@GEEGB@@@@@|
A1 A2 A3 Ad AG AB AT AB AD AIDATI COM

FIGURE C.1 EXAMFLE MASTER 1/O

168

TO PRINTER

'AR%(SN,0)=# bytes to transmit

'AR%(5N,1)=bit 16=telemetry flag

; bits 1-15=spares

'ARY(SN,2)=D1%(1-16)

'AR%(SN,3)=DI%(17-32)

"ARY(SN,4)=DI%(33-48)

"AR%(SN, 5)=virtual DI's to trigger alarm dialing

, bit 16=com fail inserted by central RUGID
'AR%{SN,6)=virtual DI's that don’t trigger dialing

'AR%{SN,7-25)=analogs from remote, 1-20

"Timers:

'DT%{1)=general purpose timer

'DT(2)=

'DT%{3y=Com reply timer

'"DT%{4)=Speech redial delay timer, 120 min.
'"DT%{5)=poll cycle timer

'DT%(6)=master fail timer...5 min,

'DT%(7)=polling delay timer, random
'DT%(8)=delay timer for dialing next operator, | min.
'DT%{9)=delay for local power fail alarm

"Misc. arrays:

"IM%%(30.2)=alarm image to watch for changes
'OL%{30)=station on line flags...1= on line; 2= need to poll
'CF%{30)=station com fail counters

'AS$(30,15)=Alarm annunciation strings

'PHS$(8)=dialer phone numbers

'"COS%{8)=dialer security codes

'GT(10)=grand totals calculated by master

'Misc variables:

'AK=alarm ACK flag...0=0K, 1=local annun., 2=already dialed this cycle
'"LA=last address sampled by master (for master com fail)
"WMF=master fail flag...0=ok

'DE=dialer enable...0=0FF, 1=local, 2=dial

'DP=display we're on...0=main, I=AT%(), 2=AR%()

'RG=# rings to answer

'SC=security code used on callin

'AF=alarm flag, 0=no alarms to report

'PA=poll address for rcv watcher

'PT=poll address for transmit

'CY=flag for poll cycle timing: O=random 20-8B0 sec, 1=short cycles

'Speech rqd:

' 1-10=numerics "1, 2, 3...0"

' 11="point"

: 12="minus"

: 13="This is the Shoreline autodialer."

' 14="Please enter your security code followed by star key."
. 15="%our security code..."

' 16="...is accepted."

' 17="...is rejected.”

169

18="Thank you...goodbye."
19="Hit any key to stop report.”
20="repeating..."

21="There are presently no alarms."

22="Select station from following list..."

23="_ison"
24="__.is of ™
2 5=1| L i.3 Eutﬂ‘l-

26=",, has failed"
27="The level is..."
28="__ feet"

29="Enter selection followed by the star key"

30="_..on..."

31="_.off.."
32="..high alarm..."
33="..low alarm..."
34="discharge pressure..."
35="Suction pressure..."

36="Press [1] for alarm report, [2] te acknowledge alarms"

37="outlet pressure..."

38="Select pump, booster or well number..."

39="Fire alarm is on."
40="Dry well is wet"
41="Valve has failed"
42="_..is running."
43="_..is not running."
44="Transducer has failed...”
45="_.is called."
46="The computer has failed."
47="0.4 MG tank..."
48="37 MG tank..."
49="2 0 MG tank..."
50="Excessive pump calls have occured."

51="Power has failed"
52="Battery voltage is low"
53="Pressure..."
54="...is low"

55="_..is high"
S6="Communications..."
57="Flow..."
58="...sensor...

59="_. level..."
60="Intruder is present."
61="pump..."
62="hooster..."
63="Pump 1..."
64="Pump 2..."
65="sump level..."
65=|“|

67="reservoir..."
68="Inflow..."
69="0utflow..."

70=""

170

71="tank..."

'Station 3 pump names:

'Station
i

i

4 pump names:

20="Reservoir booster 1"
£ 1="Reservoir booster 2"
32=III|
E3=IIH
E4=1H1
sj=ll "
86=""
S'F:H "

‘Station 5 pump names:

"Station

88=""
s)
gﬂ.:""
g1="
92=""
93=""
94=""
g5=""

6 pump names:

gﬁ="rﬂ
97=""
98=""
gg=ﬂ'"
100=""
101=""
102=""
103=""

'Station 7 pump names:

104=""
1 O5="n
106=""
107=""
108=""
109=""
| 1O=""
111=""

'Station 8 Pump names:

112="Booster station |, pump 1"
113="Bosoter station 1, pump 2"

114=""
115=""
116=""
117="
118=""
119=""

'Station 9 pump names:

120="Booster station 2, pump 1"
121="booster station 2, pump 2"

122="n
123=""
124=""
125=""

171

L}
'Station
¥

r
r
¥
i
¥
i
i

126=""

127="

10-15 pump names=strings 128-174
201="At central site..."

2{' —1rm

203=""

204="At the reservoir booster station..."
205="At the 2 MG reservoir..."
206="At supply station 3..."
207="At supply station 1..."
208="At booster station 1..."
200="At booster station 2..."

2 IG=H "

START dim AI%(11),DI%(16),DO%(8),CK%(6)

dim AT%(15,32),AR%(15,32),IM%(15,2)

dim DT%{10),G1%{16),G0%(16),CN%{15),GT(10)
dim OL%(15),CF%(15),AS%(15,32),PH$(8),COS5(8)
dim AY(11),AM(11),AB{11)

Al%(0)=4372

gosub CALINIT

gosub BINMASK

for I=1 to 15:CF%(1=10

if (AT%{1,4)<0) then OL%(1)=1
AT%(1,1=G1%(16)
IM%(1,0y=0:IM%(1,1)=0:IM%¥(1,2)=0

next

THN=10:HU=100:TH=1000:K8=128:K3=32767
V1=32512:V2=V1+16:VI=V2+16
K1=1062:K2=256*256

DD=peek{V1+3}

PO%=5:print "E";

gosub CLRSCREEN:gosub DISPLAY

AK=0

DT%(6)=300:MF=0
RA=(peek{124)*256+peck(123))-(peek(122)y*256+peek(121))
CY=0

for I=4 to 9:AT%(1,4)=AT%(1,4) or G1%{16):next

LOOP gosub POLL

gosub USERIN
gosub WATCHCOM
gosub WATCHCPU
gosub WATCHDIAL
gosub WATCHRING
gosub WATCHTIME
gosub WATCHTEST
gosub ALARMS
gosub ANYALARMS
gosub RTCAL

goto LOOP

RTCAL AY(10)=Al%{10)* AM{10)+AB{10}

return

172

"Poll rate

"Init calibration

'Setup masks for TLM

"Init comn fail, clr need flags
'On lina?

"Set TLM flags

'Clear alarm images

"Init TLM flags

'Start of voted table
‘Rev port address
'Giet address

'Modem to 4-wire
"Show display

'Kill dialing *
"Master fail flag
RAM left

"Random poll cycling
"Poll all

'Poll remotes
"Watch for user inputs
"Watch for incoming com

"Watch for CPU fail & command

'See if need to dial

"Watch for incoming ringing
"Watch the clock

"Watch for tone test emd
"Watch for local alarms

'See if any alarms

'Battery voltage

ALARMS X=AY(10}*TN

Y=AR%(2,5)

if X=AT%(2,6) then DT%(9)=60:goto ALRMOFF

if DT%{9)=0 then AR%(2,5)=Y or 1:goto ALARMS1
ALRMOFF AR%(2,5)=Y and G0?%(1)
ALARMS] if Y=AR%%(2,5) then return

SN=2:posub STATTEST return

WATCHRING if RG=0 then poke 974,0

if DI%(15)<=0 goto WATCHRRG

if (RG=0 or peek{974)<RG) then return
WATCHRRG PO%=5:print "EL"

gosub BLANKT:print "Incoming call...";
WATCHRRS gosub CLRTTONES
WATCHRR3 PO%=4:print "P13";:gosub SPKWAIT
WATCHRRT PO%=4:print "P36";:gosub SPKWAIT

poke 1146,255

gosub CLRTTONES:gosub KBTOATT

if A$="1" then gosub ALRMRPT:goto WATCHRR7

if A$="2" then gosub SECURANY :goto WATCHRR7
WATCHROUT gosub GOODBYE:gosub HANGUP:gosub BLANKT:return

SECURANY if 5C=0 goto SECURACK

PO%=4:print "P14";:gosub SPKWAIT

gosub KBTOXTT

if X=714 goto SECURACK

if 2==5C then PO%=4:print "P15P17";:gosub SPKWAIT:return
SECURACK PO¥=4:print "P15P16";:gosub SPKWAIT

gosub ACK:return

ALRMRPT if AF=0 then PO%=4:print "P21";:gosub SPKWAIT return
RR=1:gosub VERBOUT :retum

WATCHTEST if DI%(16)<1 then return
gosub BLANKT:print "Transmitting on 4-wire port...";
PO%=5:print "EX";

WATCHTEST if DI%%({16)=0 goto WATCHTESTI
gosub BLANKT:print "Test terminated...”
PO%=5:print "Y";:return

WATCHTIME if MM=CK%(1) then return
MM=CK%(1)
X=MM+60*CE%(2)
if X={10+60*8) and RF=0 then RF=1:gosub CALCTOTAL
if HH=CK%4(2) then return
HH=CEK%{(2)
if HH=12 then gosub TIMESYNC
if HH=135 then RF=0
returm

CALCTOTAL forI=1to 8

if I=5 then GT{I)=GT(I}+ARY{4,14-+I)
if 1=5 or I=6 then GT(D=GT({IH+AR%(4,14+1yHU

173

'Battery voltage
"Alarm word
'Alarm OK?
"Alarm on

"Alarm off
'Change?

"Watch for change

"Disable autoanswer if RG=0
"Watch for simulated ring
"Watch for ringing

'Go ofthook, spch to 2-wire

'Clear tone input buffer
""This is ...autod

"Select 1 for alrms, 2 ACK
'Retriggr tim watchdog

'Alarm report?
‘Security for ACK?

"Need security code?
"Enter security code..."
'Get code

'Our code

"Rejected"

'“ﬁmmﬁd "

'ACK alarms

Mo alarms?
"Report them

"DI%{16) tone test trigger?

"Transmitter on
Loop until DI%(16) off

Transmitter off

"Watch the RTC
"Minutes since midnight
Totals at 8:10

Mew hour?

'Syne all remote clocks

"Reset totalization flag

'Cale totals
"Flows Kgal

‘Run times

if 16 then GT(N=GT(I)*AR%(4,14+1)
X=GT(I)

Y=int(X/10000)

if Y<0 then Y=0

if Y>K3 then Y=K3

AR%(1,1*2)=Y

Y=int(X-Y*10000)

AR%(1,1+1*2)=Y

nextiretum

TIMESYNC for [=3 to 10
AT%(1,4)=AT%%(1,4) or G1%{14)
next
retum

WATCHCPU if DT%(6)<>0 goto WATCHCPU1
if MF<0 goto WATCHCPU1

MF=1:AR%(2,5)=AR%(2,5) or G1%(16):SN=2:gosub STATTEST

WATCHCPUI if LA=peek(K1) goto WATCHCPU2
LA=peek(K1):PO%=0:CC%=220:CR%=64:print LA;
DT%{(6)=300:MF=0
ARY(2,5=AR%(2,5) and G0%(16):5N=1:gosub STATTEST

WATCHCPU2 if (AT%(1,4) and G1%(2))=0 goto WATCHCPU3
AT%(] 4=AT%(1,4) and GO%(2)

WATCHCPU3 X=AT%(1.4)
if (X and 1)==0 then gosub ACK:AT%(1,4=X and G0%(1)
X=peek(544)
if X=0 then return
gosub MASTXFER4
gosub MASTXFERS
poke 544,0:retum

MASTXFERY X=AT%(4,5):Y=AT%(4.,6)
AT%(7,11)=X:AT%(7,12Y
X=AT%(4,71Y=AT%({4.8)
AT%(8,18)=X:AT%(8,19=Y
AT%(9,18)=X:AT%(2,19=Y
return

MASTXFERS X=AT%(5,5):Y=AT%(5,6)
AT%(6,11)=2:AT%(6,12)=Y return

USERIN PO%=0:get A$
if len(A$)=0 then return
if DP=<=0 goto USERIN|
if A$="1" then gosub ACK:gosub ALRMRPT:goto USEROUT
if A$="2" then gosub SETUP:goto USEROUT
if A$="3" then gosub SETTIME:goto USEROUT
if AS="4" then gosub PORT1:goto USEROUT
if A§="5" then gosub TTOGLDIAL
if A$="6" then DP=1:goto USEROUT
if A$="7" then DP=2:goto USEROUT
if A$="8" then gosub SETADDR
USEROUT gosub CLRSCREEN:gosub DISPLAY :return

174

"Starts

"Total flow MG
'MS

"Watch range

'Save MS to TLM
"Now for LS
'Save L3 to TLM

‘Sync remote clocks at noon
‘Set sync bits for remotes

'Init polling

"Watch for CPU fail
'Already have fail?
‘Master fail?

"New master address
'Show master poll

'Clr master fail flag

"Master poll flag?

'Clr the flag

"Master flags

'Silence?

'Address written by MODBLS
"Nothing new

"Distrib sta 4 setpoinis

"Distrib sta 5 setpoinis

"Ready for next

0.4 MG tank high & low
'Send to S5 #1

'3.7 MG tank high & low
'Send to booster #1

'And to booster #2

'2.0 MG tank high & low
'Send to 88 #3

'Keyboard input?

'On main display?
'ACK key?

"Setup?

'Set the clock

"Port 1/string load?
'"Toggle dialer enable
'‘Show AT%

'Show AR%

'Set unit address, com

USERIN] if A$="1" then DP=0:goto USEROUT
if A$="2" then gosub SETSTA:goto USEROUT
if A5="3" goto USERIN2
if A5="5" then X=DB:gosub POLLTST:return
return

USERINZ gosub BLAMNKT:print "Enter index to change...";
gosub KBTOX
if (XX<0 or X<1 or X>32) goto USEROUT
Y=X
gosub BLANKT7 print "Enter new value...";:gosub KBTOX
if X<(-K3-1) or X>K3 goto USEROUT
if DP=1 then AR%{DB,Y)=X:goto USEROUT
AT%(DB,Y)=X:FT=DB-1:goto USEROUT

PORTI gosub CLRSCREEN
print " *** STRING LOAD/PORT | CONTROL ***"
print "Mode now...";
if (peek(32527) and 2)=0 then print "ASCII";goto PORTIA
print "MODBUS"
PORTIA print
print "1 Enable MODBUS mode on port 1"
print "2 Enable ASCII mode on port 1"
print "3 Load speech config. strings.”
print
print "Choose option (1-3)...";:g05ub KBTOA
if A$="1" goto SETADDR
if A$="2" goto SETASCII
if A$="3" goto LLOADSTRG
return

SETASCII gosub CLRSCREEN
print "Setting port 1 to ASCIL.."
gosub OPENRAM:X=3:gosub DELAYX
X=64:Y=15:gosub VOTEXTOY :goto REBOOT

LLOADSTRG gosub CLRSCREEN
print "Send configuration now..."
DT%(1)=120
CONFIGIN1 PO%=1:gosub INSTRING
if DT%%(1)=0 then PO%=0:print "TIMEQUT...":return
DT%(1)=120

if 1eftS(AAS, 1)="\" then PO%=0:print "FINISHED, Bye":return

B$="":Y=len(AAS)
if Y<d4 goto CONFIGIN|
for I=1 to Y:AS=midS(AASL1)
if AS<"0" or A$="9" goto NUMDONE
Bi=BS§+ASmext

NUMDONE N=val(B$)
SN=int(N/HU):N=N-SN*HU
if len{AAR)}<7 then Z5="":goto SAVSTRG
Z5=right$(AAS.Y-I)

SAVSTRG ASS(SN N)=Z%:goto CONFIGINI

INSTRING AAS=""

175

‘Back to MAIN

'Set debug station address
"Edit AT%() or AR%()
‘Remote tone test

"Watch range
'Save index

"Watch range
'Edit AR%a()
'Edit AT%() & poll this sta

'Enable MODBUS?
'Enable ASCII?
'Load speech sirings?

"Disable MODBUS

'Start timer
"Accept incoming config

'Start timer
Done?

"Short or empty string?
'Get siring #
Numeric?

"String number
"SN=sta#, N=siring #
'‘Blank string?

"Get string to save
'Save new string

‘Get string from KB

INS1 get AS ‘& put in AAS

if DT%(1)=0 then return 'Timed out?
if len[A$)=0 goto INS1
if A$=chr$(13) or AS=chr${27) then print:return 'CR or ESC?
if Af=chrE(8) goto BACKSPACE '‘Backspace?
print A$;;:AAS=AAS+AS:goto INS] 'Save, echo, go for more
BACKSPACE print AS;" ";AS; 'Blank old char
if len(AA$)>0 then AAS=leftS(AAS len(AAS)-1)
goto INS1
POLLTST AT%(X,4)=AT%(X.4) or G1%(15) 'Set bit for remote tone
return
SETSTA gosub CLRSCREEN 'Set debug station address
print:print:print "Enter new debug sta address..."
gosub KBTOX
if X<1 or X>20 then return
DB=X:return
SETUP gosub CLRSCREEN 'Setup speech
print " wus SETUP ***"

print" 1 Edit speech messages"

print" 2 Edit speech strings"

print" 3 Edit phone numbers"

print" 4 Set rings to answer, now=";RG
print " 5 Set callin security code"

print" & Calibrate”

print "Choose option (1-6)...";:gosub KBTOA
if A$="1" then gosub TRAINSP:goto SETUP
if A§="2" then gosub SPEDIT:goto SETUP

if A$="3" then gosub EDPERSNUM:goto SETUP
if A$="4" then gosub EDRINGS:goto SETUP
if A$="5" then gosub EDSECUR:goto SETUP
if A$="6" then gosub CALIN:goto SETUP
return

EDSECUR gosub BLANKS:print "Enter new callin security code...”,

gosub KBTOX

if XX<0 or X< then return

SC=X:return 'Save new security code
EDRINGS gosub BLANKS:gosub BLANK7? 'Geet rings to answer

print "Enter rings to answer, 0 to 13..."
print "Zero disables autoanswering.";:gosub KBTOX
if XX=<0 or X<0 or X>13 then return

RG=X:return "Save rings to ans.
TTOGLDIAL DE=DE+] "Toggle dialer on/off

if DE<0 or DE=2 then DE=0 "Watch range

return
ACK AK=0:D0O%(1)=0:return 'Stop speech, kill lamp
DISPLAY if DP=0 goto DISPLI 'Show display on LCD

176

print * *** COMMUNICATIONS CONTROLLER",DD;"#**"
print
print "1 ACK 5 Dialer now...";
if DE=0 then print "OFF "
if DE=1 then print "LOCAL"
if DE=2 then print "DIAL "
print "2 Setup 6 Show AT%()"
print "3 Set clock 7 Show AR%()"
print "4 Port 1 control 8 Setup COM"
print
print "Choose option 1 to 8...",return
DISPL1 if DP=1 goto DISPL2
gosub CLRSCREEN:X=DB
if (X<1 or X>20) then DB=3:X=3
print " #** AT%() DEBUG DISPLAY *** Sta=",X
for I=1 to S:print GAT%(X, 1" "
CC%%=80:print I+5;AT%X, I+3)" ")
CC%=160:print I+10;AT%{X I+10)" "
next:goto MENU
DISPL2 gosub CLRSCREEN:X=DB
if (X<1 or X>=20) then DB=3:X=3
print " *** AR%() DEBUG DISPLAY *** Sta="{X
for I=1 to 5;print LARG(IE" "
CC%=80:print I+5;AR%(XI+5)" ";
CC%=160:print [+10;AR%(IH10)"
next
MENU CC%=0:CR%=64:print "1=DSP 2=5ta# 3=S5et value",
print " 5=TST";:return

POLL if DT%({7)<>0 then return 'Need to poll?
DT%(7)=10
POLL1 PT=PT+l
if PT=9 then PT=4
ATU%(PT, 1) =G1%(16)
AT%(PT,0)=20:AR%(PT,0)=28
POLL2 PO%=>5:print "E";:poke 542 PT:poke 541,96
gosub BLANKT7:print "Polling station";PT;"attempt"; 1 1-CF%(PT);
CF%{(PT)=CF%(PT)-1
if CF%{PT)y=0 goto POLLFAIL
if CF%(PT)<0 then CF%{PT)=-1:CN%(PT)=0
return
POLLFAIL CN%(PT)=0
¥=PT:gosub CLRFLAGS
AR%(PT,5)=AR%(PT,5) or G1%(16):SN=PT:gosub STATTEST
return

WATCHCOM X=0
for =4 to 9
if AR%(1,1)<0 then X=I:I=11
next:PA=X
if X=0 then return
AR%(PA,1)=0
CF%(PA)=10:CNY%(PA)=0
X=PA:posub CLRFLAGS

177

‘Dialer enable?

"Debug display
"Watch station range

‘Column 1
‘Column 2
‘Column 3

"Debug display
"Watch station range

"Column |
'Column 2
'Column 3

"Short time for quick polls
"Mext sta to poll

'Done with stations?

"TX flag

'TX, RX lengths

"Send poll

'Show

'Com fail counter

'Failed?

"Limit range

'Stop polling on fail
'Clear time syne and test flags on fail
'Fail flag on

"Watch for incoming msgs
"Test for any msg

"Had msg?

‘Clr TLM flag

'Restart com fail counter, clr need flag
'Clear clock sync & tone test flags

if DP=1 and DB=PA then gosub DISPLAY

gosub BLANK7:print "Received from station";PA

if PA=4 or PA=5 then gosub XFER

if (AR%(PA.4) and G1%(15))<=0 then gosub SENDTONE
SN=PA:gosub STATTEST

retum

CLRFLAGS AT%(X.4)=AT%(X.4) and G0%{14)
ATW(X4=ATY (X 4) and GO%(15)
AT X, 2FATY(X.2) and GO%(16)
return

SENDTONE DT%{(1)=20
PO%=5:print "EX";
gosub BLANKT:print "Sending test tone to sta";PA
GOTMSLOOP if DT%(1)<+0 goto GOTMSLOOP
gosub BLANKY7;print "Done with test...";
PO%=3:print "Y";retum

STATTEST X5=AR%(SN,5):X6=AR%(SN,6):11=IM%(SN,1):12=IM%(5N.2)
if (SN=5 and SN<10) then X6=0:12=0
if X5=11 and X6=12 goto STATTEST2
STATTESTI Y=0:for I=1 to 16
if (X5 and G1%(I))=<=0 and (11 and G1%(1))=0 then Y=I
if (X6 and G1%(1))==0 and (12 and G1%(1))=0 then Y=I
if Y===0 then I=17
next
if Y=0 goto STATTEST2
DO%(1 =1
STATTEST3 if AK<>0 goto STATTEST2
AK=1:PN=0
if CK2%%(6)=1 or CK%(6)=7 then DT%(4)=6900:goto STATTEST2
if CK%%(2)<8 then DT%(4)=6900:goto STATTEST2
if CK%{2)=16 then DT%(4)=6900:goto STATTEST2

"Show new data on LCD if AR%()

'Data transfers?
'Send test tone?
'See if any alarms

'Clear clock sync flag
'Clear tone command flag
'Clear lockout reset flag

'Give 20 sec. test tone
"Transmit tone on

"Wait til done

"Tgnore 2nd word
'Change?
"Test if new one on

'Have any new ones?
"New alarm lamp on
'Already have alarm?
'Flag dialing, 1st PH#
"Weekend?

‘Before 8 AM?

‘After 5 PM?

if CK%(2)=16 and CK%(1)=29 then DT%(4)=6900:g0to STATTEST2 '4:30 to 57

DT%(4)=7200
STATTESTZ X=MF:for I=1 to 10
if [<6 then X=X+AR%{I,5+AR%(1.6)
if I=5 then X=X+AR%(L,5)
STATTESTA next
if X=0 then AK=0
IM%(SN, 1 =25 IM%{(SN,2)=X6:return

XFER Y=AR%(4,7:X=AR%i(4,8)
AT%(8,10)=3:ATH(9,10)=X
AT%(7,14)=Y
AT%(6,14)=ARY(3,7)
retum

CLRFAIL AR%(PA,5)=AR%(PA,5) and G0%(16):CF¥%(PA)=10:return
WATCHDIAL if AK=0 or DE=0 then DL=2:return

if (AT%(1,4) and 1)=0 goto WATCHD!
AT%(1,4=AT%(1,4) and GO%(1):gosub ACK:return

178

"Default 5 min.

"Test if any alarms
"‘Both words for low sta.
'One word for high sta.

'Kill dialing if none
"Save image

"Reservoir levels
3.7 MG to boosters
0.4 MG to S8 #1
2.0 MG to SS #3

'Clr com fail flag
'See if need to annunciate

"aster ACK?
"Master ACK...clr it

WATCHD] gosub ANYALARMS
if AF=0 then AK=0:return
if DT%{4)=0 then DT%(4)=7200:AK=1:PN=0
if (DT%{4)>6900 or AK=2) goto LOCAL
DIALNOW if DE<2 goto LOCAL
if DT%{8)==0 then retum
gosub DIALOPER
if (PN>7 and AK-<-0) then AK=2
retumn
LOCAL if DL=2 then gosub SPKLOCAL:DL=I
if (CK%(1) and 1)=0 and DL=0 then DL=1:gosub SPKLOCAL
if (CK%(1) and 1)===0 then DL={)
return

ANYALARMS X=0
for SN=2to 9
if SN<6 then X=X+abs{AR%({SN,5))+abs(AR(SN,6))
if SN=3 then X=X-+abs(AR%:(SN,5)}
ANYALIL next
AF=X:return

DIALOPER PN=PN+1
if PN>8 then PN=8:return
if len(PHS(PN))=0 goto DIALOPER
gosub DIALOUT
X=10:gosub DELAYX
X=len{COS(PN})
if X<1 goto DIALVERB
AS=1eftF(COS(PN),1)
if (A$=="0" and A$<="9") goto DIALVERB
PO%=5:print "A";
for I=1 to X-1:A$=midS(COS(PN),I+1.1}

"Any alarms still present?

'Do ACK if none

'Restart timer, 1st operator
'Local?

'Enable dialer?

"Waiting to dial next operator?
'Dial one operator

'Finished list?

'Spk alarm immediately?
'Local @ 2 min.
'Reset annun flag

"Test if any alarms

‘Flag=0=alarm

"WNext PH #

'Stop after § numbers
'Have ph numbr?

*Dial PH #

“Wait

"Security code?

'Assume verbal if no code
'Get st char of code

"15t char numeric==>verbal
‘Modem 2-wire for pager code
'Get | char from code

print A, 'Send char to pager
next
X=3:gosub DELAY X:DT%(8)=600 "Wait 3 sec code, 10 min callback *
gosub HANGUP 'Hangup *
gosub BLANK7:print "Done dialing.";return'Tell user *
DIALVERB PO%=5:print "E" 'Speech to 2-wire channel
gosub REPORTOUT '‘Report then get security for ACK
gosub HANGUP "Hang up phone

gosub BLANKT7:print "Done dialing.":DT%(8)=60:return

REPORTOUT RR=4:gosub CLRTTONES
REPAGAIN PO%=4:print "P13";:gosub SPKWAIT
gosub VERBOUT
if RR=-1 then gosub ACK:gosub GOODBYE:return
RR=RR-1
"Decr repeat counter
if RR>0 then PO%=4:print "P19P20";:goto REPAGAIN
NOWSECUR gosub SECURITY:gosub GOODBY E:retumn

SPKLOCAL gosub CLRTTONES

RE=1:gosub VERBOUT
if RR=-1 then ACK={:return

179

'60 sec callback time

'Up to 4 repetitions
"This is the...autodialer "
'Report alarms

'Had local ack?

'Repeat?
'Ask for & get security

'Clear touch tones
'Annunciate alarms locally
'Had local ACK?

PO%=4:print "P20";:gosub SPKWAIT:gosub VERBOUT
if RR=-1 then AK=0
return

VERBOUT if MF=0 goto VERB11
PO%=4:print "P20 1P46";:gosub SPIKWAIT
PO%~=0:get A%
if len(AS)==0 then RR=-1

VERBI1 for SN=2to 15
if (SN=5 and AR%(5N,5}=0) goto VERBNXT
if (SN<6 and (AR%(SN,5)+ARY(SN,6)}=0) goto VERBNXT
PO%=4:print "P";:SN+200;:zosub SPKWAIT
for BT=1 to 16
PO%=0:get A%
if len{A%)=0 goto VERBOUT2
if A5="1" then RR=-1

VERBOUTZ PO%=5:get AS

if ({(A%>="0" and A$<="9") or AS="*" or AS="#") then RR=-2

if (AR%(SN,5) and G1%(BT))=0 goto VERBBIT

PO%=4:print ASS(SN,BT);:gosub SPKWAIT
VERBBIT if RR<0 then BT=HU

next

if BT=HU goto VERBNXT

if SN=6 or SN=7 goto VERBNXT

for BT=1to 16

PO%=0:get AS

if len(A%)=0 goto VERBOUT3

if A$="1" then RR=-1
VERBOUT3 PO%=5:get A%

if ((AS>="0" and A%<="9") or A5="*" or AS="#") then RR=-12

if (AR%%(SM,6) and G1%{BT))=0 goto VERBBIT3
PO%=4:print ASS(SN,BT+16);:gosub SPKWAIT
VERBBIT3 if RR<0 then BT=HU
next
VERBNXT if RR<0) then SN=HL]
next
station
VERBEX return

GOODBYE PO%=4:print "P18";:gosub SPKWAIT:retum

SECURITY TY=3
SECUR2 DT%(1)=20:PO%=5:AA$=""
X=len(COS(PN})
if X=0 then return
gosub CLRTTONES:PO%=4:print "P14";:gosub SPKWAIT
SECURI if DT%%(1)=0 goto MISMATCH
PO%~=5:get A
if AS="*" goto TEST
if AE>="0" and A$<="9" then AAS=AAS+AS
goto SECUR1
if X<>len(AAS$) goto MISMATCH
TEST for I=] to X
if midf(AAS,L1)==mid${COS(PN),1,1} goto MISMATCH

180

""Repeating..."
'Had local ACK?

'State all active alarms
""Master has failed"”
"Master ACK?

"State all active alarms
'Ome word for hi sta. *
"Tst if sta has alrm *
"Identify station

"Scan 1st 16 alarms
KB ack?

"Touchtone char?
'ACK?
'Alarm?
"Report alarm
'Had ACK?
Next bi

'Skip 2nd word on 551 & 553
'Scan 2nd 16 alarms
'KB ack?

"Touchtone char?
'ACK?
'Alarm?
'Report alarm
"Had ACK?
"MNext bi
'Had ACK?
"Mext

'Goodbye

'Get security code...3 tries
'Get security code

"Test security code

Mo code necessary

"Pls enter sec. code"
"Out of time, no security

'End of code?
MNumber?

'Lengths match?

"Mismatch?

next
MATCH AK=0:PO%=d4:print "P15P16";;zosub SPKWAIT:return

MISMATCH PO%=4:print "P15P17";:gosub SPKWAIT
TY=TY-1
if TY <=0 then retum
goto SECUR2

CLRTTONES PO%=>5:for I=1 to 20:get A$:next:return
SPEKWAIT PO%=4:print

SPEAGAIN PO%=4:get AS
if AS="T" then return

"Match
'Mismatch..rejected

'‘Expended tries?
'Go try again

'Clr touch tones

'Send carriage return to start synthesizer
'Get status of synthesizer
'Wait for "I" (idle) indication

goto SPKAGAIN

HANGUP PO%=5:print "K" 'Hang up phone
return

OFFHOOK PO%=5;print "L";;return "Pick up phone

WIRE2 PO%=5:print "A",:return

DIALOUT if len{PHS(PN))=0 then return 'Dial PH #(PN)
gosub OFFHOOK 'Off hook
gosub BLANKT7:print "Dialing operator at ";PHS{PN);"...";
X=3:gosub DELAYX "Wait 3 sec.

PO%=5:print "A";
for I=1 to len(PHS(PN)):A$=midS(PHS$(PN),1.1)
if A$="-" then X=2:gosub DELAYX:goto NXTCH
print A$;
MNXTCH next
=3:gosub DELAY X return

BLANKT PO2%=0:CC%=0:CR%%=56
print " x
CC%=0:return

BLANKE PO%=0:CC%=0:CR%=64
print " ;
CC%=0:return

DELAYX DT%(1)=X
DELAY if DT%(1)<=0 goto DELAY 1
return

CLRSCREEN PO%=0:print chr§(12):CC%=0:CR%=8:return

SETADDR V1=32512:V2=V1+16:V3=V2+16
gosub CLESCREEN
gosub OPENRAM:X=3:gosub DELAYX
gosub ADDRESS
gosub SETCRCOPS
REBOOT print "REBOOTING...PLEASE WAIT":X=2:gosub DELAYX
poke 4,3:poke 3,136:X=USR(0)

181

'Set modem to 2-wire for dialing
'Get 1 char from phone #

rDElﬂ.}" 2 Sec, if’u_ir

'Otherwise send char to dialer
"Wait 3 sec for dialing

'Blank LCD line 7

'Blank LCD line 8

"Delay X seconds

"Start of voted table

'Open RAM & wait for write protect
"Set address

"Setup for CRC radio TLM

"Imp to $8803 (MAIN)

DELAYX DT%(1)=X
DELAY1 if DT%(1)<>0 goto DELAY1
refurn

ADDRESS X=1:print:print "Setting address to™;X
poke V1+3 X:poke V2+3 X:poke V3+3 X:retumn

VOTEXTOY poke VI1+Y X:poke V2+Y X:poke V3+Y X:return

OPENRAM print "Opening RAM..."
X=peek(969) and 191:poke 969 X :poke 34800, X:return

SETCRCOPS print "Setting up CRC flags & com delays..."
X=1:Y=Il:gosub VOTEXTOY
K=22:Y=2:posub VOTEXTOY
X=63:Y=10:gosub VOTEXTOY
X=9:Y=11:gosub VOTEXTOY
X=42:Y=12:gosub VOTEXTOY
X=66:Y=15:gosub VOTEXTOY
returmn

SPEDIT gosub CLRSCREEN
print:print:print "Choose station # (1-10)..."
gosub KBTOX
if X<1 or X>10 then return
SN=X
SPEDITAL X=0:gosub SHOWSPST
gosub BLANKS:print "Choose alarm to change (1-16)...";
gosub KBTOX
if X<1 or X>16 goto SPEDIT2
Y=X:AS$(SN,Y)=""
SPEDIT] X=0:gosub SHOWSPST
gosub BLANKS:print "Enter # of next phrase (1-999)...";
gosub KBTOX
if XX=<0 or X<1 or X>999 goto SPEDITAL
AS=atrB(X): X=len(AS)-1: AS=mid$({AS,2,X)
ASS(SN,Y)=ASS(SN,Y)+"P"+AS
PO%=4:print AS$H{(SN,Y)
goto SPEDITI
SPEDIT2 X=16:gosub SHOWSPST
gosub BLANKS:print "Choose alarm to change (17-32)...";
gosub KBTOX
if X=17 or X>32 then return
Y=X:AS$(SN,Y)=""
SPEDIT3 X=16:gosub SHOWSPST
gosub BLANKS:print "Enter # of next phrase (1-999)...";
gosub KBTOX
if XX<0 or X<1 or X>999 goto SPEDIT2
Af=str3(X):X=len(AS)-1: AS=mid${AS,2 X)
ASS(SN,Y)=ASS(SN,Y)H'"P"+AS
PO%=4:print ASH(SN,Y)
goto SPEDIT3

182

'Delay X seconds

"Store new unit address

"Poke X to VOTDAT,Y ...

'Open RAM

"Setup RAM for CRC, radio..parity
"Baud, stop bits, word length

"Low tones...15 rings

'CRC communications

'Delay=.7 sec before XMIT

'Setup modem connection & MODBUS

'Edit speech strings

"Watch range

'Show speech ID strings

'In range?
'‘Blank old string
"Show strings now

'In range?

'Get phrase D

'Save in speech cmd format
'Say it

'Show speech ID strings

'In range?
'‘Blank old string
'"Show strings now

'In range?

'Get phrase ID

'Save in speech cmd format
'Say it

SHOWSPST gosub CLRSCREEN:print " #+¥ ALARM STRINGS **=
forI=1 to 6
print [+X;ASS(SN,I+X),
CC%=80:print [+6+X;ASS(SN,[+6+X);
if =4 then print:goto SHOWSPST1
CC¥%=160;print I+12+X;ASSEN,I+12+X)
SHOWSPSTI1 next:return

EDPERSNUM gosub CLRSCREEN
print " ***¥ PERSONNEL NUMBER LIST ***":print
prit * NUMBER CODE NUMBER CODE"
for I=1 to 4:CC%=0:print ;PHE(I);
CC%=84:print CO$(I);:CC%=128:print I+4;PHS(1-+4);
CC%=212:print COS(I-+4):next
print "Choose number to change (1-8)...";:gosub KBTOA
if AS<"1" or AS$>="8" then return
I=val{A$):gosub BLANKS:print "Enter new phone # for entry #";1;
gosub INSTRING:PHS(1)=AAS
gosub BLANKS8:print "Enter new security code for entry #";1;
gosub INSTRING:X=len(AAS$)
if X<1 goto EDPERSNLUM
Af=lefth(AAS, 1)
if (A$>="0" and A$=="9") goto EDPERS|
AS=rightS{AAS,X-1)
AAS="P"+AS+"H"

EDPERS1 COS(I)=AAS:goto EDPERSNUM

INSTRING AAS=""
INS1 get AS
if len{A$)=0 goto INS!
if AS=chr${13) or AS=chr${27) then print:return
if A$=chr$(8) goto BACKSPACE
print AS;:AAS=AA$+AS:goto INS1
BACKSPACE print AS;" ":AS$;
if len{AAS)=0 then AAS=lefiS(AAS, len(AAS)-1)
goto TNS1

TRAINSP PX%=0:PO%=PX%:gosub CLRSCREEN
print "*** SPEECH EDITOR ***"
print
print "1=Record"
print "2=Playback”
print "3=Delete"
print
print "Enter choice..."
DT%(1)=300:gosub KEYSTRK
if X<1 or X=3 then return
K=1
'initialize message # to
on X gosub RECORD,PLAYBACK,DELETE
goto TRAINSP

RECORD print "Ready to record message #";K;"."
print "Or enter different number (1 to 999)."

183

'‘Show strings

'Have code?

'Get st char

"Mumeric 1st char?

'‘Get all but 15t char

'Put "P" on front, # on back
'Save security code

'Get string from KB
'& put in AAS

'CR or ESC?
‘Backspace?

‘Save, echo, go for more
‘Blank old char

‘Enable user to train speech

‘get user choice.
‘terminated.

'1, branch to choice.

print "Recording starts and stops with ENTER key: ";

KZ=K:gosub MSGNUM
if K=0 then return
if XZ<=K goto RECORD
CME="R"+str¥(K):gosub SFEECH
if UM$="" goto GOODREC
print UM$:goto RECAGAIN
GOODREC print:print "Recording message #";K;""
DT%{1)=300
LOOKSTOP gosub KEYSTRK
if len{A%)=0 then return
if asc{A%$)<>13 goto LOOKSTOP
"User stops speech process:
PO%=PX%:CM$="C":gosub SPEECH:print UM$
'Above: Show recording time lefi
PO%=4:print "P"+str3(K)
RECAGAIN K=K+1:PO%=PX%:print:goto RECORD

PLAYBACK print "Ready to playback message #";;"."
print "Or enter different number (1 to 999)."
print "Playback starts with [ENTER] key: ";
gosub MSGNUM
if K={0 then return
PO%=35:print "EL";
CM$="P"+str§(K):gosub SPEECH
if UMS="" goto PLAYING
print UM$%:goto PLAYAGIN

PLAYING print:print "Playing message #":K:" ..."

MOREPLAY gosub SPEECH
if UMS$="" goto MOREPLAY
print UM3

PLAYAGIN K=K+1:print:goto PLAYBACK

DELETE print:print "1=Delete single message"
print "2=Delete range"
print "Enter option (1-2)...";:zosub KBTOA
if A$="1" goto DELETE1
if A$="2" goto DELRANGE
return

DELRANGE print:print "Enter lowest message to delete...";;gosub KBTOX

if XX=0 or X<1 or X>999 then return

‘exit if invalid.

'‘Reprompt if new msg #
‘record command.

'‘command accepted.
'Problem, show user message.

"pive user more than max
'recording time.

'user didn't stop.

'no [ENTER] key yet.

'Cancel recording

'Say message
"auto advance to next msg.

'exit if invalid msg #.
'Send to phone also
‘command to speech board.

"lock for end of playback.
"still busy.

'auto advance msg #, send

LS=X "Lowest
print:print "Enter highest message to delete. .";:gosub KBTOX

if XX<0 or X<1 or X>999 or X<LS then return

MES=X "Highes
for K=MS to LS step -1:gosub DELETEK :next:return

DELETE! print:print "Enter message # to delete (1-999)";:gosub KBTOX
if XX<0 or X<1 or X>999 then return
=X:gosub DELETEK:goto DELETE] "Delete it
DELETEK print "MSG=";K
CM3="D"+str$(K):gosub SPEECH ‘command to speech board,

184

if UM$="" goto DELTING

print UM$:return
DELTING print:print "Deleting message #";K;" ..."
PACKING gosub SPEECH

if UM$="" goto PACKING

print UMB$:return

MEGNUM DT%(1)=60:gosub KEYBOARD
if AAS=chr8(13) then refurn
K=int{XX}
if K<1 or K>1000 then K=0
return

SPEECH PO%=4:UME=""
if CM$="C" then print CME;:CM3=""
if CM$<="" then print CM$:CM$=""
FINEX get AS
if AS="W" or AS="1" goto TRANSMSG
if AS="A" goto FINEX
UM$=UMS+AS:goto FINEX
TRANSMSG PO%=PX%
if UM$="" then return
if left$({UMS, 1)="M" goto TIMELEFT
N=val(right$(UM$,1))
on N goto ERM1,ERM2,ERM3,ERM4, ERMS5, ERM6&
UM$=""return
TIMELEFT UM$=mid$(UMS$,2):MR=val(UM$)
TL=mt(MR*26.5)/100

UM3$="Recording time remaining (sec.)="+str§(TL) 'put into msg.

return

ERMI UMSE="0ut of voice memory." return

ERM2 UM3="Message already exists for this message #.":return
ERM3 UM%="No message exists for this message #."-return
ERM4 UMS="No message number was specified.":return
ERMS5 UMS="Too many characters in message number.™:return
ERM6 UM$="Playback message que is full.":return

'KEYBOARD checks the keyboard for user entry.
'For single keysiroke enter at KEYSTRE,

KEYBOARD PO%=PX%:AA$="":CFl=0:XX=1
ANOTHER gosub KEYSTRE
if len(A%)=0 then AA$="":XX=-1:print:return
if asc{A$)=13 then AAS=AAS+AS:print:return
iff X==-1 goto ADDCHAR
if A$="-"and CF%=0 goto ADDCHAR
if AS<="." or CF%=2 goto KEYWAIT
CF%=2
ADDCHAR print A$;:AAS=AAS+AS:XX=val(AAS)
if CF%=0 then CF%=1
KEYWAIT DT%{1)=120:goto ANOTHER
KEYSTRK PO%=PX%:X=-1:get A§
if len{A$}—0 goto XVALUE

185

"watch for completion.
'still busy.
"Result.

'only an [ENTER].

'out of range.

'speech port.

'no line feed on cancel.
‘any other command,
'read speech response.
'char interchange done.
'acknowledge useless.
'save E, M and #.
'ready for LCD msg.
'no msg at this time.
'memory remaining msg.
'error message, look

of Kbytes of RAM left,
'convert to seconds.

"initialize.

'get next key.
no entry,
"[enter].
"number,
"leading minus.
"allow one dec
'point.
'display char
‘& add to str.
‘wait again.
'new key?
‘evaluate it.

iFDT%(1Y>0 goto KEYSTRK
retum

XVALUE if A$>="0" and A$=="9" then X=val(A$)
return

BINMASK X=1 'Setup mask fields
for I=1 to 15:G1%(I)=X:G0%(I}=X-1:X=X*2:next
G1%(16)=-32768:G0%(16)=32767:return

'KBTOX reads keyboard and puts value in X
'Allows 120 sec for keystroke

‘At end, if error or CR only, XX=-1, otherwizse X has value entered

KBTOX J=CC%:DT%{1)=120:X=0:XX=0:1=0:L-0:B§=""
KBTOXI if DT%a(1)=0 then XX=1:return
get AS
if len(AS)=0 goto KBTOX1
DT%(1)=120
if AS="C" or A$="D" or AS="U" goto CLRIT
if X<0 and A$="-" goto CLRIT
if L<<=0 and A$="." goto CLRIT
[=1+1:print AS;
if AS="-" then X=-1
if I=1 and AS=chrE(13) then XX=-1:return
if A$=chr$({13) then X=val(B$):returm
B$=Bf+A%:poto KBTOXI
CLRIT CC%=]:for K=1 to L:print " ";:next:CC%=J:goto KBTOX

KBTOA DT%(1)=120

KBI if DT%(1)=0 then A$="C":return
get AR
if len(A$)=0 goto KBI
Teturn

KBTOXTT gosub CLRTTONES
J=C0%: =0 XX=0:1=0:L=0:B%=""
KBTOXTTI gosub KBTOATT
if A$="C" then XX=-1:return
if &$=H#II then A$=llr'|
if L==0 and A$="." goto CLRITT
I=1+1
if I=1 and A$="*" then X=-1:XX=-2:return
if AS="*" then X=val(B$).return
Bi{=B$+A%:goto KBTOXTTI
CLRITT goto KBTOXTT

KBTOATT DT%(1)=20
gosub CLRTTONES

KBIT if DT%(1)=0 then A$="C":return
PO%=5:get AS
if A$>="0" and A$<="9" then return
if AS="*" or AS="#" then return
goto KBIT

186

"still waiting.
'time out,
'got a digit.

'Get KB value to X
'Get character
'Restart timer on keystroke

12 Ilu“ signsl?

*2 decimals?

‘Count chars received & echo
'Flag II_'lI

'CR only?

"Save char & go for more
'Clr entry

"Wait up to 120 sec. for keystroke
"Timeout?

'Return with keystroke in AS
'Get KB value to X (touchtone)

'Get 1 char,
'Timed out?
"Use # as dp

'2 decimals?
‘Count char revd
'CR only?

"Save char & go for more
'Clr entry

"Wait for touchtone keystroke
'First clear tones
"Timeout?

'Have char?
'Ditto

SETTIME gosub TIMENOW:print "Enter new day of weelk:"
print "1=5un, 2=Mon, 3=Tue, 4=Wed"
print "5=Thu, 6=Fri, 7=5at";:gosub KBTOA
if AS<"1" or A$>"7" goto MONTHIN
CE%{6)=val(AS)
MONTHIN gosub TIMENOW :print "Enter new month (1-12):":input I
if 1<1 or I>12 goto DAYOFMONTH
CE%{4)=1
DAYOFMONTH gosub TIMENOW :print "Enter day of month (1-31):":input |
if I<1 or [>31 goto YEARIN
CE%%6(3)=1
YEARIN gosub TIMENOW:print "Enter new year (0-99):":input I
if 1<0 or 1=99 goto HOURIN
CK%(5)=I
HOURIN gosub TIMENOW :print "Enter new hour (0-23):"input I
if <0 or 1>23 goto MINUTEIN
CK%(2)=I
MINUTEIN gosub TIMENOW:print "Enter new min. (0-59):":input I
if I<0 or 1>59 then return
CK%(1)=1:CK%(0)}=0:return

TIMENOW gosub CLRSCREEN:gosub RTC
print "Present date/time:";JJ§:returm

LR UHKHEI:Se-mp RTC sh‘mg in J]S:Hﬂ!! L LE R L]

RTC I=CK%(6)
if I<1 or I=7 then JJ$=" ":poto SKIPDAY
[=3%(CK%(6)-1)+1:C0=CK%(1)
JI$=mid$("SUNMONTUEWEDTHUFRISAT",1,3)+" "
SKIPDAY I=4:gosub TIMEX :JJ§=JI§+"/"
I=3:gosub TIMEX :1J$=1J§+""
I=5:gosub TIMEX :JJ$=]1§+""
I=2:gosub TIMEX :11$=118+chr$(58)
I=1:gosub TIMEX :JJ$=]J$+" ":return
TIMEX A$=str3{CK%(I})
IF len{A$)<3 then JIS=I1$+"0"+right${AS,1):return
1J§=11%+right$(AS,2):return

'CALMAN calibration routines
Tnteracts with user to gather coefficients for 2 point calibration

'For analog input calibration:

: M and B are stored in AM{) and AB() respectively

' To avoid losing cal when editing program, the calibration

! constants are stored in the reserved area from

! $1F00 through $1FFF. These are loaded by CALINIT upon

boot up. A total of 32 analog channels can be stored in this

area. This routine allocates space for 24 analog inputs, and

8 analog outputs. They are arranged thus:
F1F00-S1F03=AM(1)*65536
S$1F04-S1F07=AB(1)*65536
S1F08-S1FOB=AM(2)*65536

187

Day of week

"Month

"Day of month

Y ear

"Hours:

'Minutes

'read clock & format to 2 chars.

: $1FC0-81FC3=0M(1)*65536
: $1FCA-S1IFCT=0B(1)*65536

'In realtime operation, result would be:
) result(T)=AM(I)* Al%{I)+AB(I) for inputs 1 to 11
! result{D=AM(I)/AI%(1)+AB(T) for inputs 12 and up.

'For analog output calibration:
! M and B are stored in OM() and OB() respectively

"In realtime operation, result would be:
f AO%(T)=OM(T)* value(T}+OB(T)

'"CALINIT reads reserved user area and gathers saved cal coefficients.
' Should be executed at beginning of program.

CALINIT for I=1 to 11
11=(1-1)*8:gosub CALRAMINX
AM(D=X/65536
11=(1-1)*8+4:gosub CALRAMINX
AB(I)=X/65536
next
return

CALRAMINX J=T936+11
X=peek(J)+256*peek(J+1)+65536*peek(J+2)
XX=peek(J+3) and 128
IT=peek(J+3) and 127
X=X+16777216%(I)
if XX=0 then return
X=-X:return

CALRAMOTX J=7936+11:11%%=0
if X<0 then [1%=128:X=-X
X=X*65536:XX=int(X/16777216)
X1%=XX and 127 or 11%:poke J+3 X 1%
X=X -XX*16777216:X1%=int(X/65536):poke J+2,X1%
X=X-X1%"*65536:X1%=int(X/256):poke J+1 X1%
X=X-X1%*256:poke J,int{X):return

CALIN gosub CLRSCREEN
print "Enter input channel to calibrate.”
print "Allowed range is 1 through 11, 0 exits":input X
if X<1or X=11 goto CALDONE
CH=int(X)
print "Apply known low value to analog input";CH
print "Key in corresponding engrg. units value.":input X
Al=X:A2=A1%(CH)
print "Apply known high value to analog input";CH
print "Key in corresponding engrg. units value.":input X
A3=X:A4=Al1%(CH)
if CH=11 then A2=1/A2:Ad=1/A4
if abs(A2-A4)>.000001 goto COMPUT

188

'Get AM() cal value to X
'Scale down and save
"Get AB() cal value to X
'Secale down & save

'Get X from reserved area, byte]

'Get MS byte, no sign

'"Save X to location in reserved arca, byte J

'Get sign of X
'MS byte (1)
IB}TE [2}* HERE

'B}’[L‘ [3}* EEETS
'LS byte (4)

‘Save channel we're calibrating

'Save it and A/D output

"Save it and A/D output
"I/ AT%%(T) if expansion A/D

print "Input value error...restarting cal."
for I=1 to 1000:next
goto CALIN

COMPUT M=(A1-A3)}{AZ-Ad)

B=Al-M*AZ

"Mow show result of this calibration

gosub CLRSCREEN
A2=100:A3=0.5

CALOOP CR%=8:CC%=0

print "Present AI";CH;"=":AI%(CH);" "
if CH<12 then Al=int{{M*AI%{(CH}+B)*A2+A3)VA2
if CH=11 then Al=int{{M/AI%(CH)+B)*A2+A3)A2
print "Engrg. value="JA1;" "

print "Key in 1 to save"

print "Key in 2 to discard"

CALI get AS

if len(A$)=0 goto CALOOP

if A$=="1" goto CALIN

AM(CH}=M:AB(CH)=B
X=AM(CH):II=(CH-1)*8:gosub CALRAMOTX
X=AB(CH):11=({CH-1)*8+4:gosub CALRAMOTX
goto CALIN

CALDONE print "Exiting calibration routines,"

for 1=1 to 1000:next:refurn

189

"Delay

'Compute M
‘and B

'Clear the LCD

"Use for significance conirol
'Set display cursor location
'Show user A/D input
'Control significance
"Expansion Al's

'Show resulting value

"Watch for keystroke

'Save coefficients
'Put in reserved area
"Ditto

"Return for more

Delay & exit

372
%, 72
7,72

@, 72
~ T3

2-wire, 53, 55
4-wire, 53, 55

AD, 22

AAS, 75

ABS, 79

AC%, 38

Adjustable gain, 21
adjustable gain amp, 5
AFB, 125

Al%, 21,22, 75, 102
AlO, 123

ALERT, 53, 55
ALERT Tone set, 5
Analog I'0 Expansion, 9
Analog input, 102
analog input, 111
Analog inputs, 5
analog inputs, 21, 25, 75
Analog output, 103
Analog outputs, §
analog outputs, 25, 75
AND, 78, 82
Anemometer, 21
anemometer, 39
Anemometer input, 5
Ans/originate, 56
answer tone, 55
AO%, 25,31, 75, 103
AR%s, 75, 89
arithmetic, 77

Armrays, T4

ASC, B4

ASCIL 133

AT%, 75, 89
Attempted Divide by Zero, 135
autodial, 106

backlight, 40, 49
BARGRAPH.LIB, 48
BARGRAPHS, 47

INDEX

Base, 5

BASIC interpreter, 69
battery backup, 104
battery charge, 40
battery charger, 104
battery voltage, 23
BAUD RATE, 18
Baud rate, 51, 56

Bell 103, 51
bidirectional transfers, 91
buffer, 90

buffers, 52

bus voltage, 23

Busy signal, 54

calibration, 31

CALIN, 31

CALINIT, 31

CC%, 44, 75

character mode, 49
chip select, 61
CHIPPAGE, 66

CHRS, 85

CK%, 58, 75, 103, 104
CLEAR, 18,79
clock/calendar, 58, 75, 104
CLRSCREENC, 43, 48
CLRSCREENG, 43
C0O%, 21,38
cock/calendar, 75
Column position, 44
COM, 128

Command mode, 16
comment, 71
Communication board, 10
communications, 89
communications board, 128
Complex String, 135
CONT, 77

Continue Error, 135
contrast, 44, 112
controlling relays, 101
CONVERT.EXE, 70
COSs, 79

CR%, 44, 75

CRC, 5, 17, 53, 89
CRC-16, 89

CTRL K, 16,70, 73
CTRLT, 16, 73

CURRENT CONSUMPTION, 11

current loop, 25, 103
cursor, 44

DATA, 78

Data Type Mismatch, 135
DB9, 17

DEF FNx, 80

DFB, 40, 43, 125

D%, 35,75, 102
DIAGMNOST, 112
DIAGNOSX, 13, 51, 89
Dial tone, 54

dialing, 54

Digital I'O Expansion, 9
Digital inputs, 5

digital inputs, 35, 75
digital outputs, 39, 75
DIM, 74

DIO, 43

direct commands, 69
Divide by Zero, 135
D%, 39, 41, 75, 102
DT%, 58, 75, 103
DU%, 37,43, 75

DX%, 37, 75

editing programs, 70
EMF, 112

END, 77

error messages, 134
EXP, 80

Expansion, 5

fault trapping, 76

flash a digital output, 102
Floating, 74

Floating array, 74
Floating Point, 74

FN, 80

FOR, 82

FRE, 87

Function Call Parameter, 134

fuse, 105
FWt, 75,92

GET, 54, 86
GOSUB, 83
GOTO, 83

grid lines, 64, 66
grounding, 111

o, 21, B6
IF, 83
IF..GOTO, 83
IF.. THEN, 83

Illegal Direct Command, 135

indirect commands, 69
INPUT, 86

input‘output, 86

INT, 80

Integer, 74

Integer array, 74
Invalid Subscript, 135

kana characters, 49
key, 53
kevhoard, 49

labels, 71

LCD, 43, 48, 112
leap year, 58
LEFTS, 85

LEN, 85

LET, 78

LFB, 129

lightning, 112

LIST, 18, 76
lithium, 61

Lithium battery, 105
LOG, 80

Long String, 135
Loop Impedance, 104
lost program, 111

Low power field board, 10

Main Board, 9
main board, 114
memaory, 39
memory map, 137
MIDE, 83

MIO, 43
MODBUS, 5, 16, 94
MODE, 56
Modem, 10
madem board, 53
modem port, 51
Monitor mode, 16
MUX amplifier, 11

NEW, 18

NEXT, 82

Wext Without For, 134
NOT, 78, 82

offhook, 35

ONM, 84

OM..GOSURB, 84
ON..GOTO, 84
onhook, 55

optical encoder, 38
Optical Field board, 10
OR, 78, 82

INDEX

Out of Data, 134
Out of Memory, 135
Overflow, 134

Pl1%, 46, 75

P2%, 46, 75

P3%, 46, 75

page select, 61

Parity, 51, 56

PD%, 37,75

PEEK, 79

PFRB, 124

Playback, 60

PLOT, 46

plot, 64, 75

plot size, 65

PLOT(), 68

plotting, 46, 63
plotting to printer, 63
PO%, 52, 75,87
POKE, 79

port 2, 89

PORT 5, 55

power, 13
precedence, 77
PRINT, 87

printer port, 19, 56
program loading, 18
programming pert, 13
Protected Field Board, 9
protected memory, 73
PRWATCH, 57

pulse counters, 735
pulse counting, 37, 38
pulse duration, 37, 75
pulse duration outputs, 43

OMODEM, 13, 17

RAM Bank, 9

RAM bank, 5, 60, 63,94, 98,117
RAM window, 61

RAM2, 66

RAMIT, 65

READ, 78

real time clock, 58, 103, 104, 112
Record, 60

Relay, 39

Relay Field Board, 10

Relay outputs, 5

relay outputs, 43

REM, 87

repair policy, 136

RESTORE, 79

RETURN, 84
Return Without GOSUB, 134
RFB, 43
RIGHTS, 85
Ringback, 54
RND, 80

Row position, 44
RS8232, 50, 56
RTC, 71

RTCAL, 31
RUGH, 4, 40
RUG7, 4, 22, 130
RUGS, 4, 40
RUMN, 70,77

Run mode, 16

sample interval, 22
serial port, 50, 70

SGN, 81

SIN, 31

SLEEF, 5, 38

special characters, 49, 72
Speech, 5,9

speech, 53, 53,59, 118
SOR, 81

statement, 70

status input, 102

STOPR, 77

Stop bits, 36

stop bits, 51

storage required by variables, 74
Store & forward, 5

store and forward, 75, 92
STOREXI. 67

STRS, 85

String, 74

String array, 74

siring concatenation, 77
strings, 84

subscript, 74

Syntax, 134

Synthesizer, 60
synthesizer, 118

TAN, 81

telemetry radio, 106
temperature, 21, 23
terminal port, 51
text transfers, 92
THEN, 83

time delay, 103
timers, 58, 75
tipper bucket, 39
touchtone, 54

INDEX

transducer, 104
transmitter, 55
transmitter delay, 90
Transmitter key, 55
transmitter key, 53
troubleshooting, 111

Undefined Function, 135
Undefined Statement, 135
unprotected memory, 75
USE, 62, 88

VAL, 86
variable name, 73
voted memory, 17

WAIT, 88
watchdog, 53

watchdog timer, 58, 76
Windows Terminal, 17
Word length, 51, 56
write protection, 59, 105

Z8, 62,73

RUGID COMPUTER
6305 Elizan Dr. N/
Olympia, WA 98502

360.866.4492 FAX 360.866.8074

I
1 |

	Cover
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199

